--- tags: - regression - pytorch license: mit --- ## Model Description `NumAdd-v2.0` is an optimized feed-forward neural network (FNN) in PyTorch for numerical sum prediction. **Architecture:** 2-input, 1-output, with two hidden layers (32, 64 neurons) and ReLU activations. **Parameters:** 2,273 trainable. **Precision:** Requires `torch.float64` (double precision). **Training Config:** Optimal batch size: 2048, Final tuning learning rate: 1.0e-12. ## Evaluation Benchmarked on 120,000 samples across six input magnitude ranges. Metrics: MAE, MSE, RMSE, R2. | Range (Input Max) | MAE | MSE | RMSE | R2 | |-------------------|---------|----------|---------|---------| | 0-50 | 0.004 | 0.000 | 0.004 | 1.000 | | 51-500 | 0.003 | 0.000 | 0.004 | 1.000 | | 501-5000 | 0.004 | 0.000 | 0.004 | 1.000 | | 5001-50000 | 0.004 | 0.000 | 0.005 | 1.000 | | 50001-500000 | 0.010 | 0.001 | 0.028 | 1.000 | | 500001-50000000 | 0.706 | 6.333 | 2.517 | 1.000 | ## Limitations Precision degrades for extremely large magnitude inputs (e.g., >500,000), indicated by increased MAE/MSE, although R2 remains high.