--- tags: - generated_from_trainer datasets: - pile-instruct/ metrics: - accuracy model-index: - name: layer_4,5,6,7,8 results: - task: type: text-generation name: Causal Language Modeling dataset: name: pile-instruct/ type: pile-instruct/ split: None metrics: - type: accuracy value: 0.20994595912408442 name: Accuracy --- # layer_4,5,6,7,8 This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the pile-instruct/ dataset. It achieves the following results on the evaluation set: - Loss: 6.9437 - Accuracy: 0.2099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.6017 | 0.02 | 200 | 7.5928 | 0.1605 | | 7.1871 | 0.03 | 400 | 7.2690 | 0.1847 | | 7.0356 | 0.05 | 600 | 7.0897 | 0.1980 | | 6.93 | 0.07 | 800 | 6.9870 | 0.2064 | | 6.9089 | 0.08 | 1000 | 6.9437 | 0.2099 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3 ## Wandb Report https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/6hvfd11h