Mujtaba-omar20 commited on
Commit
1afdb5a
·
verified ·
1 Parent(s): 1dc1613

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +114 -0
  2. model.h5 +3 -0
  3. skincare_products_clean.csv +0 -0
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled3.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/15hJqN0ojQZbWh5t6vlnLXzMAAuUyY84Y
8
+ """
9
+
10
+ import gradio as gr
11
+ import pandas as pd
12
+ import tensorflow as tf
13
+ import numpy as np
14
+ import requests
15
+ from io import BytesIO
16
+ from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
17
+ from tensorflow.keras.preprocessing import image
18
+
19
+ # Load model and data
20
+ model = tf.keras.models.load_model("model.h5")
21
+ df = pd.read_csv("skincare_products_clean.csv")
22
+
23
+ # Load MobileNetV2 feature extractor
24
+ feature_extractor = MobileNetV2(weights='imagenet', include_top=False, pooling='avg')
25
+
26
+ # Reduction layer to match model input (32 features)
27
+ reduce_model = tf.keras.Sequential([
28
+ tf.keras.layers.InputLayer(input_shape=(1280,)),
29
+ tf.keras.layers.Dense(32, activation='relu')
30
+ ])
31
+
32
+ CLASS_NAMES = [
33
+ "acne", "aging", "dryness", "sensitivity", "pigmentation",
34
+ "eczema", "rosacea", "dark circles", "wrinkles", "scars"
35
+ ]
36
+
37
+ concern_ingredients = {
38
+ "acne": ["salicylic acid", "benzoyl peroxide", "niacinamide", "azelaic acid", "tea tree"],
39
+ "dryness": ["hyaluronic acid", "glycerin", "ceramide", "squalane"],
40
+ "aging": ["retinol", "peptides", "vitamin c", "niacinamide"],
41
+ "sensitivity": ["allantoin", "panthenol", "madecassoside", "centella"],
42
+ "pigmentation": ["vitamin c", "kojic acid", "azelaic acid", "niacinamide"],
43
+ }
44
+
45
+ def recommend_products(concern, num_results=5, max_price=None, sort_by="price"):
46
+ ingredients = concern_ingredients.get(concern.lower(), [concern.lower()])
47
+ pattern = '|'.join(ingredients)
48
+ df_filtered = df[df['clean_ingreds'].str.contains(pattern, case=False, na=False)]
49
+
50
+ if max_price:
51
+ df_filtered = df_filtered[df_filtered['price'] <= float(max_price)]
52
+
53
+ if df_filtered.empty:
54
+ df_filtered = df.copy()
55
+
56
+ if sort_by in df_filtered.columns:
57
+ df_filtered = df_filtered.sort_values(by=sort_by)
58
+ else:
59
+ df_filtered = df_filtered.sort_values(by="price")
60
+
61
+ df_filtered['clean_ingreds'] = df_filtered['clean_ingreds'].apply(
62
+ lambda x: ', '.join(eval(x)[:3]) + "..." if isinstance(x, str) and x.startswith('[') else x
63
+ )
64
+ df_filtered['price'] = df_filtered['price'].round(2)
65
+
66
+ output = ""
67
+ for _, row in df_filtered.head(num_results).iterrows():
68
+ output += f"🧴 **Product**: {row['product_name']}\n"
69
+ output += f"📦 **Type**: {row['product_type']}\n"
70
+ output += f"🧪 **Key Ingredients**: {row['clean_ingreds']}\n"
71
+ output += f"💰 **Price**: £{row['price']}\n\n"
72
+ return output.strip()
73
+
74
+ def diagnose_image(image_input):
75
+ try:
76
+ img = image_input.resize((224, 224))
77
+ img_array = image.img_to_array(img)
78
+ img_array = np.expand_dims(img_array, axis=0)
79
+ img_array = preprocess_input(img_array)
80
+
81
+ features_1280 = feature_extractor.predict(img_array)
82
+ features_32 = reduce_model.predict(features_1280)
83
+ preds = model.predict(features_32)
84
+
85
+ class_index = np.argmax(preds[0])
86
+ confidence = preds[0][class_index] * 100
87
+ return f"✅ Predicted Diagnosis: **{CLASS_NAMES[class_index].capitalize()}**\n🔎 Confidence: {confidence:.2f}%"
88
+ except Exception as e:
89
+ return f"❌ Error: {e}"
90
+
91
+ # Gradio Interface
92
+ text_interface = gr.Interface(
93
+ fn=recommend_products,
94
+ inputs=[
95
+ gr.Textbox(label="Skincare Concern (e.g., acne, dryness)"),
96
+ gr.Number(label="Number of Recommendations", value=5),
97
+ gr.Number(label="Max Price (Optional)", value=None),
98
+ gr.Textbox(label="Sort By (price, product_name, etc.)", value="price")
99
+ ],
100
+ outputs="text",
101
+ title="🧴 Skincare Product Recommender"
102
+ )
103
+
104
+ image_interface = gr.Interface(
105
+ fn=diagnose_image,
106
+ inputs=gr.Image(type="pil", label="Upload Skin Image"),
107
+ outputs="text",
108
+ title="🧬 Skin Condition Diagnosis"
109
+ )
110
+
111
+ gr.TabbedInterface(
112
+ [text_interface, image_interface],
113
+ tab_names=["🧴 Text-Based Recommender", "🧬 Image-Based Diagnosis"]
114
+ ).launch()
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:039ef1e6f47274afa21df6cd06026b47fc79a288e2bd5e9ec7a168d90df875a7
3
+ size 110320
skincare_products_clean.csv ADDED
The diff for this file is too large to render. See raw diff