jartine commited on
Commit
7f5cb34
1 Parent(s): ed1b8a6

Add README.md to repo

Browse files
Files changed (1) hide show
  1. README.md +47 -57
README.md CHANGED
@@ -40,38 +40,36 @@ model-index:
40
  <!-- header start -->
41
  <!-- 200823 -->
42
  <div style="width: auto; margin-left: auto; margin-right: auto">
43
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
44
  </div>
45
  <div style="display: flex; justify-content: space-between; width: 100%;">
46
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
47
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
48
  </div>
49
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
50
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
51
  </div>
52
  </div>
53
- <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
54
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
55
  <!-- header end -->
56
 
57
- # WizardCoder Python 34B V1.0 - GGUF
58
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
59
  - Original model: [WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
60
 
61
  <!-- description start -->
62
  ## Description
63
 
64
- This repo contains GGUF format model files for [WizardLM's WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0).
65
 
66
- <!-- description end -->
67
- <!-- README_GGUF.md-about-gguf start -->
68
- ### About GGUF
69
 
70
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
71
 
72
- Here is an incomplate list of clients and libraries that are known to support GGUF:
73
 
74
- * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
75
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
76
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
77
  * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
@@ -81,13 +79,13 @@ Here is an incomplate list of clients and libraries that are known to support GG
81
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
82
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
83
 
84
- <!-- README_GGUF.md-about-gguf end -->
85
  <!-- repositories-available start -->
86
  ## Repositories available
87
 
88
- * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-AWQ)
89
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ)
90
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF)
91
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
92
  <!-- repositories-available end -->
93
 
@@ -107,10 +105,10 @@ Below is an instruction that describes a task. Write a response that appropriate
107
  <!-- prompt-template end -->
108
 
109
 
110
- <!-- compatibility_gguf start -->
111
  ## Compatibility
112
 
113
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
114
 
115
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
116
 
@@ -127,34 +125,34 @@ The new methods available are:
127
 
128
  Refer to the Provided Files table below to see what files use which methods, and how.
129
  </details>
130
- <!-- compatibility_gguf end -->
131
 
132
- <!-- README_GGUF.md-provided-files start -->
133
  ## Provided files
134
 
135
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
136
  | ---- | ---- | ---- | ---- | ---- | ----- |
137
- | [wizardcoder-python-34b-v1.0.Q2_K.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q2_K.gguf) | Q2_K | 2 | 14.21 GB| 16.71 GB | smallest, significant quality loss - not recommended for most purposes |
138
- | [wizardcoder-python-34b-v1.0.Q3_K_S.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q3_K_S.gguf) | Q3_K_S | 3 | 14.61 GB| 17.11 GB | very small, high quality loss |
139
- | [wizardcoder-python-34b-v1.0.Q3_K_M.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q3_K_M.gguf) | Q3_K_M | 3 | 16.28 GB| 18.78 GB | very small, high quality loss |
140
- | [wizardcoder-python-34b-v1.0.Q3_K_L.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q3_K_L.gguf) | Q3_K_L | 3 | 17.77 GB| 20.27 GB | small, substantial quality loss |
141
- | [wizardcoder-python-34b-v1.0.Q4_0.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q4_0.gguf) | Q4_0 | 4 | 19.05 GB| 21.55 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
142
- | [wizardcoder-python-34b-v1.0.Q4_K_S.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q4_K_S.gguf) | Q4_K_S | 4 | 19.15 GB| 21.65 GB | small, greater quality loss |
143
- | [wizardcoder-python-34b-v1.0.Q4_K_M.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q4_K_M.gguf) | Q4_K_M | 4 | 20.22 GB| 22.72 GB | medium, balanced quality - recommended |
144
- | [wizardcoder-python-34b-v1.0.Q5_0.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q5_0.gguf) | Q5_0 | 5 | 23.24 GB| 25.74 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
145
- | [wizardcoder-python-34b-v1.0.Q5_K_S.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q5_K_S.gguf) | Q5_K_S | 5 | 23.24 GB| 25.74 GB | large, low quality loss - recommended |
146
- | [wizardcoder-python-34b-v1.0.Q5_K_M.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q5_K_M.gguf) | Q5_K_M | 5 | 23.84 GB| 26.34 GB | large, very low quality loss - recommended |
147
- | [wizardcoder-python-34b-v1.0.Q6_K.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q6_K.gguf) | Q6_K | 6 | 27.68 GB| 30.18 GB | very large, extremely low quality loss |
148
- | [wizardcoder-python-34b-v1.0.Q8_0.gguf](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF/blob/main/wizardcoder-python-34b-v1.0.Q8_0.gguf) | Q8_0 | 8 | 35.86 GB| 38.36 GB | very large, extremely low quality loss - not recommended |
149
 
150
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
151
 
152
 
153
 
154
- <!-- README_GGUF.md-provided-files end -->
155
 
156
- <!-- README_GGUF.md-how-to-download start -->
157
- ## How to download GGUF files
158
 
159
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
160
 
@@ -165,7 +163,7 @@ The following clients/libraries will automatically download models for you, prov
165
 
166
  ### In `text-generation-webui`
167
 
168
- Under Download Model, you can enter the model repo: TheBloke/WizardCoder-Python-34B-V1.0-GGUF and below it, a specific filename to download, such as: wizardcoder-python-34b-v1.0.q4_K_M.gguf.
169
 
170
  Then click Download.
171
 
@@ -180,7 +178,7 @@ pip3 install huggingface-hub>=0.17.1
180
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
181
 
182
  ```shell
183
- huggingface-cli download TheBloke/WizardCoder-Python-34B-V1.0-GGUF wizardcoder-python-34b-v1.0.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
184
  ```
185
 
186
  <details>
@@ -189,7 +187,7 @@ huggingface-cli download TheBloke/WizardCoder-Python-34B-V1.0-GGUF wizardcoder-p
189
  You can also download multiple files at once with a pattern:
190
 
191
  ```shell
192
- huggingface-cli download TheBloke/WizardCoder-Python-34B-V1.0-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
193
  ```
194
 
195
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
@@ -203,25 +201,25 @@ pip3 install hf_transfer
203
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
204
 
205
  ```shell
206
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/WizardCoder-Python-34B-V1.0-GGUF wizardcoder-python-34b-v1.0.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
207
  ```
208
 
209
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
210
  </details>
211
- <!-- README_GGUF.md-how-to-download end -->
212
 
213
- <!-- README_GGUF.md-how-to-run start -->
214
  ## Example `llama.cpp` command
215
 
216
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
217
 
218
  ```shell
219
- ./main -ngl 32 -m wizardcoder-python-34b-v1.0.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
220
  ```
221
 
222
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
223
 
224
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
225
 
226
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
227
 
@@ -233,7 +231,7 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
233
 
234
  ## How to run from Python code
235
 
236
- You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
237
 
238
  ### How to load this model from Python using ctransformers
239
 
@@ -250,13 +248,13 @@ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
250
  CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
251
  ```
252
 
253
- #### Simple example code to load one of these GGUF models
254
 
255
  ```python
256
  from ctransformers import AutoModelForCausalLM
257
 
258
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
259
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/WizardCoder-Python-34B-V1.0-GGUF", model_file="wizardcoder-python-34b-v1.0.q4_K_M.gguf", model_type="llama", gpu_layers=50)
260
 
261
  print(llm("AI is going to"))
262
  ```
@@ -268,7 +266,7 @@ Here's guides on using llama-cpp-python or ctransformers with LangChain:
268
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
269
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
270
 
271
- <!-- README_GGUF.md-how-to-run end -->
272
 
273
  <!-- footer start -->
274
  <!-- 200823 -->
@@ -276,31 +274,23 @@ Here's guides on using llama-cpp-python or ctransformers with LangChain:
276
 
277
  For further support, and discussions on these models and AI in general, join us at:
278
 
279
- [TheBloke AI's Discord server](https://discord.gg/theblokeai)
280
 
281
  ## Thanks, and how to contribute
282
 
283
- Thanks to the [chirper.ai](https://chirper.ai) team!
284
 
285
- Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
286
 
287
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
288
 
289
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
290
 
291
- Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
292
 
293
- * Patreon: https://patreon.com/TheBlokeAI
294
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
295
 
296
- **Special thanks to**: Aemon Algiz.
297
 
298
- **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
299
 
300
 
301
- Thank you to all my generous patrons and donaters!
302
 
303
- And thank you again to a16z for their generous grant.
304
 
305
  <!-- footer end -->
306
 
 
40
  <!-- header start -->
41
  <!-- 200823 -->
42
  <div style="width: auto; margin-left: auto; margin-right: auto">
 
43
  </div>
44
  <div style="display: flex; justify-content: space-between; width: 100%;">
45
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
46
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/FwAVVu7eJ4">Chat & support: jartine's Discord server</a></p>
47
  </div>
48
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
 
49
  </div>
50
  </div>
51
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">jartine's LLM work is generously supported by a grant from <a href="https://mozilla.org">mozilla</a></p></div>
52
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
53
  <!-- header end -->
54
 
55
+ # WizardCoder Python 34B V1.0 - llamafile
56
  - Model creator: [WizardLM](https://huggingface.co/WizardLM)
57
  - Original model: [WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
58
 
59
  <!-- description start -->
60
  ## Description
61
 
62
+ This repo contains llamafile format model files for [WizardLM's WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0).
63
 
64
+ WARNING: This README may contain inaccuracies. It was generated automatically by forking <a href=/TheBloke/WizardCoder-Python-34B-V1.0-GGUF>TheBloke/WizardCoder-Python-34B-V1.0-GGUF</a> and piping the README through sed. Errors should be reported to jartine, and do not reflect TheBloke. You can also support his work on [Patreon](https://www.patreon.com/TheBlokeAI).
65
+ <!-- README_llamafile.md-about-llamafile start -->
66
+ ### About llamafile
67
 
68
+ llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64. llamafile offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
69
 
70
+ Here is an incomplate list of clients and libraries that are known to support llamafile:
71
 
72
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for llamafile. Offers a CLI and a server option.
73
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
74
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
75
  * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
 
79
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
80
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
81
 
82
+ <!-- README_llamafile.md-about-llamafile end -->
83
  <!-- repositories-available start -->
84
  ## Repositories available
85
 
86
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-AWQ)
87
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-GPTQ)
88
+ * [2, 3, 4, 5, 6 and 8-bit llamafile models for CPU+GPU inference](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile)
89
  * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
90
  <!-- repositories-available end -->
91
 
 
105
  <!-- prompt-template end -->
106
 
107
 
108
+ <!-- compatibility_llamafile start -->
109
  ## Compatibility
110
 
111
+ These quantised llamafilev2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
112
 
113
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
114
 
 
125
 
126
  Refer to the Provided Files table below to see what files use which methods, and how.
127
  </details>
128
+ <!-- compatibility_llamafile end -->
129
 
130
+ <!-- README_llamafile.md-provided-files start -->
131
  ## Provided files
132
 
133
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
134
  | ---- | ---- | ---- | ---- | ---- | ----- |
135
+ | [wizardcoder-python-34b-v1.0.Q2_K.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q2_K.llamafile) | Q2_K | 2 | 14.21 GB| 16.71 GB | smallest, significant quality loss - not recommended for most purposes |
136
+ | [wizardcoder-python-34b-v1.0.Q3_K_S.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_S.llamafile) | Q3_K_S | 3 | 14.61 GB| 17.11 GB | very small, high quality loss |
137
+ | [wizardcoder-python-34b-v1.0.Q3_K_M.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_M.llamafile) | Q3_K_M | 3 | 16.28 GB| 18.78 GB | very small, high quality loss |
138
+ | [wizardcoder-python-34b-v1.0.Q3_K_L.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q3_K_L.llamafile) | Q3_K_L | 3 | 17.77 GB| 20.27 GB | small, substantial quality loss |
139
+ | [wizardcoder-python-34b-v1.0.Q4_0.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_0.llamafile) | Q4_0 | 4 | 19.05 GB| 21.55 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
140
+ | [wizardcoder-python-34b-v1.0.Q4_K_S.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_K_S.llamafile) | Q4_K_S | 4 | 19.15 GB| 21.65 GB | small, greater quality loss |
141
+ | [wizardcoder-python-34b-v1.0.Q4_K_M.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q4_K_M.llamafile) | Q4_K_M | 4 | 20.22 GB| 22.72 GB | medium, balanced quality - recommended |
142
+ | [wizardcoder-python-34b-v1.0.Q5_0.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_0.llamafile) | Q5_0 | 5 | 23.24 GB| 25.74 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
143
+ | [wizardcoder-python-34b-v1.0.Q5_K_S.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_K_S.llamafile) | Q5_K_S | 5 | 23.24 GB| 25.74 GB | large, low quality loss - recommended |
144
+ | [wizardcoder-python-34b-v1.0.Q5_K_M.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q5_K_M.llamafile) | Q5_K_M | 5 | 23.84 GB| 26.34 GB | large, very low quality loss - recommended |
145
+ | [wizardcoder-python-34b-v1.0.Q6_K.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q6_K.llamafile) | Q6_K | 6 | 27.68 GB| 30.18 GB | very large, extremely low quality loss |
146
+ | [wizardcoder-python-34b-v1.0.Q8_0.llamafile](https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/blob/main/wizardcoder-python-34b-v1.0.Q8_0.llamafile) | Q8_0 | 8 | 35.86 GB| 38.36 GB | very large, extremely low quality loss - not recommended |
147
 
148
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
149
 
150
 
151
 
152
+ <!-- README_llamafile.md-provided-files end -->
153
 
154
+ <!-- README_llamafile.md-how-to-download start -->
155
+ ## How to download llamafile files
156
 
157
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
158
 
 
163
 
164
  ### In `text-generation-webui`
165
 
166
+ Under Download Model, you can enter the model repo: jartine/WizardCoder-Python-34B-V1.0-llamafile and below it, a specific filename to download, such as: wizardcoder-python-34b-v1.0.q4_K_M.llamafile.
167
 
168
  Then click Download.
169
 
 
178
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
179
 
180
  ```shell
181
+ huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile wizardcoder-python-34b-v1.0.q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
182
  ```
183
 
184
  <details>
 
187
  You can also download multiple files at once with a pattern:
188
 
189
  ```shell
190
+ huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile --local-dir . --local-dir-use-symlinks False --include='*Q4_K*llamafile'
191
  ```
192
 
193
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
 
201
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
202
 
203
  ```shell
204
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download jartine/WizardCoder-Python-34B-V1.0-llamafile wizardcoder-python-34b-v1.0.q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
205
  ```
206
 
207
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
208
  </details>
209
+ <!-- README_llamafile.md-how-to-download end -->
210
 
211
+ <!-- README_llamafile.md-how-to-run start -->
212
  ## Example `llama.cpp` command
213
 
214
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
215
 
216
  ```shell
217
+ ./main -ngl 32 -m wizardcoder-python-34b-v1.0.q4_K_M.llamafile --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
218
  ```
219
 
220
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
221
 
222
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the llamafile file and set by llama.cpp automatically.
223
 
224
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
225
 
 
231
 
232
  ## How to run from Python code
233
 
234
+ You can use llamafile models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
235
 
236
  ### How to load this model from Python using ctransformers
237
 
 
248
  CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
249
  ```
250
 
251
+ #### Simple example code to load one of these llamafile models
252
 
253
  ```python
254
  from ctransformers import AutoModelForCausalLM
255
 
256
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
257
+ llm = AutoModelForCausalLM.from_pretrained("jartine/WizardCoder-Python-34B-V1.0-llamafile", model_file="wizardcoder-python-34b-v1.0.q4_K_M.llamafile", model_type="llama", gpu_layers=50)
258
 
259
  print(llm("AI is going to"))
260
  ```
 
266
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
267
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
268
 
269
+ <!-- README_llamafile.md-how-to-run end -->
270
 
271
  <!-- footer start -->
272
  <!-- 200823 -->
 
274
 
275
  For further support, and discussions on these models and AI in general, join us at:
276
 
277
+ [jartine AI's Discord server](https://discord.gg/FwAVVu7eJ4)
278
 
279
  ## Thanks, and how to contribute
280
 
 
281
 
 
282
 
283
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
284
 
285
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
286
 
 
287
 
 
 
288
 
 
289
 
 
290
 
291
 
 
292
 
293
+ And thank you again to mozilla for their generous grant.
294
 
295
  <!-- footer end -->
296