github-actions[bot]
commited on
Commit
·
f2471cd
1
Parent(s):
f19f8f4
Add built binary [skip-build]
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- build/torch27-cxx11-cu118-x86_64-linux/activation/__init__.py +2 -1
- build/torch27-cxx11-cu118-x86_64-linux/activation/{_activation_20250907180255.abi3.so → _activation_53ed492_dirty.abi3.so} +2 -2
- build/torch27-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
- build/torch27-cxx11-cu118-x86_64-linux/activation/fused_add_rms_norm_meta.py +199 -0
- build/torch27-cxx11-cu118-x86_64-linux/activation/parallel_style.py +50 -0
- build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm.py +47 -20
- build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm_meta.py +164 -0
- build/torch27-cxx11-cu126-x86_64-linux/activation/__init__.py +2 -1
- build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so → torch27-cxx11-cu126-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so} +2 -2
- build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch27-cxx11-cu126-x86_64-linux/activation/fused_add_rms_norm_meta.py +199 -0
- build/torch27-cxx11-cu126-x86_64-linux/activation/parallel_style.py +50 -0
- build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm.py +47 -20
- build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm_meta.py +164 -0
- build/torch27-cxx11-cu128-x86_64-linux/activation/__init__.py +2 -1
- build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_20250907180255.abi3.so +0 -3
- build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so +3 -0
- build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +0 -3
- build/torch27-cxx11-cu128-x86_64-linux/activation/_ops.py +3 -3
- build/torch27-cxx11-cu128-x86_64-linux/activation/fused_add_rms_norm_meta.py +199 -0
- build/torch27-cxx11-cu128-x86_64-linux/activation/parallel_style.py +50 -0
- build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm.py +47 -20
- build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm_meta.py +164 -0
- build/torch27-cxx11-rocm63-x86_64-linux/activation/__init__.py +2 -1
- build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_20250907180255.abi3.so +0 -3
- build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so → torch27-cxx11-rocm63-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so} +2 -2
- build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so +0 -3
- build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +0 -3
- build/torch27-cxx11-rocm63-x86_64-linux/activation/_ops.py +3 -3
- build/torch27-cxx11-rocm63-x86_64-linux/activation/fused_add_rms_norm_meta.py +199 -0
- build/torch27-cxx11-rocm63-x86_64-linux/activation/parallel_style.py +50 -0
- build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm.py +47 -20
- build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm_meta.py +164 -0
- build/torch28-cxx11-cu126-x86_64-linux/activation/__init__.py +2 -1
- build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_20250907180255.abi3.so +0 -3
- build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_20250907180255.abi3.so → torch28-cxx11-cu126-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so} +2 -2
- build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so +0 -3
- build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +0 -3
- build/torch28-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
- build/torch28-cxx11-cu126-x86_64-linux/activation/fused_add_rms_norm_meta.py +199 -0
- build/torch28-cxx11-cu126-x86_64-linux/activation/parallel_style.py +50 -0
- build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm.py +47 -20
- build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm_meta.py +164 -0
- build/torch28-cxx11-cu128-x86_64-linux/activation/__init__.py +2 -1
- build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_20250907180255.abi3.so +0 -3
- build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so +3 -0
- build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so +0 -3
build/torch27-cxx11-cu118-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/torch27-cxx11-cu118-x86_64-linux/activation/{_activation_20250907180255.abi3.so → _activation_53ed492_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:80267a0391fa4cb22aa3eb04b05d8214c2bfaed968b714185bc20214596072e3
|
| 3 |
+
size 8618232
|
build/torch27-cxx11-cu118-x86_64-linux/activation/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _activation_53ed492_dirty
|
| 3 |
+
ops = torch.ops._activation_53ed492_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_activation_53ed492_dirty::{op_name}"
|
build/torch27-cxx11-cu118-x86_64-linux/activation/fused_add_rms_norm_meta.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_fused_add_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.fused_add_rms_norm.default,
|
| 34 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 35 |
+
def fused_add_rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 36 |
+
mesh = op_schema.get_mesh_from_args()
|
| 37 |
+
|
| 38 |
+
assert len(op_schema.args_schema) == 4
|
| 39 |
+
(
|
| 40 |
+
input_strategy,
|
| 41 |
+
residual_strategy,
|
| 42 |
+
weight_strategy,
|
| 43 |
+
_, # eps
|
| 44 |
+
) = op_schema.args_schema
|
| 45 |
+
|
| 46 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 47 |
+
assert isinstance(residual_strategy, OpStrategy)
|
| 48 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 49 |
+
|
| 50 |
+
lengths = {
|
| 51 |
+
"input": len(input_strategy.strategies),
|
| 52 |
+
"residual": len(residual_strategy.strategies),
|
| 53 |
+
"weight": len(weight_strategy.strategies),
|
| 54 |
+
}
|
| 55 |
+
assert len(set(
|
| 56 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 57 |
+
|
| 58 |
+
last_dim = input_strategy.ndim - 1
|
| 59 |
+
strategy = OpStrategy([])
|
| 60 |
+
for input, residual, weight in zip(input_strategy.strategies,
|
| 61 |
+
residual_strategy.strategies,
|
| 62 |
+
weight_strategy.strategies):
|
| 63 |
+
|
| 64 |
+
input_src = input.output_spec
|
| 65 |
+
residual_src = residual.output_spec
|
| 66 |
+
weight_src = weight.output_spec
|
| 67 |
+
|
| 68 |
+
assert isinstance(input_src, DTensorSpec)
|
| 69 |
+
assert isinstance(residual_src, DTensorSpec)
|
| 70 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 71 |
+
|
| 72 |
+
redistribute_costs = []
|
| 73 |
+
|
| 74 |
+
# Input can be sharded in any dim except the last dim.
|
| 75 |
+
input_tgt = DTensorSpec(
|
| 76 |
+
mesh=mesh,
|
| 77 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 78 |
+
last_dim),
|
| 79 |
+
tensor_meta=input_src.tensor_meta,
|
| 80 |
+
)
|
| 81 |
+
redistribute_costs.append(
|
| 82 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 83 |
+
|
| 84 |
+
# Residual add must have the same sharding as input.
|
| 85 |
+
residual_tgt = input_tgt
|
| 86 |
+
redistribute_costs.append(
|
| 87 |
+
generate_redistribute_costs(residual_strategy, residual_tgt))
|
| 88 |
+
|
| 89 |
+
# Weight cannot be sharded, so always replicate it.
|
| 90 |
+
weight_tgt = DTensorSpec(
|
| 91 |
+
mesh=mesh,
|
| 92 |
+
placements=(Replicate(), ),
|
| 93 |
+
tensor_meta=weight_src.tensor_meta,
|
| 94 |
+
)
|
| 95 |
+
redistribute_costs.append(
|
| 96 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 97 |
+
|
| 98 |
+
strategy.strategies.append(
|
| 99 |
+
OpSpec(
|
| 100 |
+
output_specs=[input_tgt, input_tgt],
|
| 101 |
+
input_specs=[input_tgt, residual_tgt, weight_tgt],
|
| 102 |
+
redistribute_cost=redistribute_costs,
|
| 103 |
+
))
|
| 104 |
+
return strategy
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@register_op_strategy(ops.fused_add_rms_norm_backward.default,
|
| 108 |
+
schema_info=RuntimeSchemaInfo(2))
|
| 109 |
+
def fused_add_rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 110 |
+
mesh = op_schema.get_mesh_from_args()
|
| 111 |
+
|
| 112 |
+
assert len(op_schema.args_schema) == 6
|
| 113 |
+
(
|
| 114 |
+
output_grad_strategy,
|
| 115 |
+
add_output_grad_strategy,
|
| 116 |
+
add_output_strategy,
|
| 117 |
+
weight_strategy,
|
| 118 |
+
_, # eps
|
| 119 |
+
need_input_grad, # need_input_grad
|
| 120 |
+
) = op_schema.args_schema
|
| 121 |
+
|
| 122 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 123 |
+
assert isinstance(add_output_grad_strategy, OpStrategy)
|
| 124 |
+
assert isinstance(add_output_strategy, OpStrategy)
|
| 125 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 126 |
+
|
| 127 |
+
lengths = {
|
| 128 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 129 |
+
"add_output_grad": len(add_output_grad_strategy.strategies),
|
| 130 |
+
"add_output": len(add_output_strategy.strategies),
|
| 131 |
+
"weight": len(weight_strategy.strategies),
|
| 132 |
+
}
|
| 133 |
+
assert len(set(
|
| 134 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 135 |
+
|
| 136 |
+
zipped = zip(
|
| 137 |
+
output_grad_strategy.strategies,
|
| 138 |
+
add_output_grad_strategy.strategies,
|
| 139 |
+
add_output_strategy.strategies,
|
| 140 |
+
weight_strategy.strategies,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
last_dim = output_grad_strategy.ndim - 1
|
| 144 |
+
strategy = OpStrategy([])
|
| 145 |
+
for output_grad, add_output_grad, add_output, weight in zipped:
|
| 146 |
+
output_grad_src = output_grad.output_spec
|
| 147 |
+
add_output_grad_src = add_output_grad.output_spec
|
| 148 |
+
add_output_src = add_output.output_spec
|
| 149 |
+
weight_src = weight.output_spec
|
| 150 |
+
|
| 151 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 152 |
+
assert isinstance(add_output_grad_src, DTensorSpec)
|
| 153 |
+
assert isinstance(add_output_src, DTensorSpec)
|
| 154 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 155 |
+
|
| 156 |
+
redistribute_costs = []
|
| 157 |
+
|
| 158 |
+
# output grad can be sharded in any dim except the last dim.
|
| 159 |
+
output_grad_tgt = DTensorSpec(
|
| 160 |
+
mesh=mesh,
|
| 161 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 162 |
+
last_dim),
|
| 163 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 164 |
+
)
|
| 165 |
+
redistribute_costs.append(
|
| 166 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 167 |
+
|
| 168 |
+
# add_output_grad must have the same sharding as output_grad.
|
| 169 |
+
add_output_grad_tgt = output_grad_tgt
|
| 170 |
+
redistribute_costs.append(
|
| 171 |
+
generate_redistribute_costs(add_output_grad_strategy,
|
| 172 |
+
add_output_grad_tgt))
|
| 173 |
+
|
| 174 |
+
# add_output must have the same sharding as output_grad.
|
| 175 |
+
add_output_tgt = output_grad_tgt
|
| 176 |
+
redistribute_costs.append(
|
| 177 |
+
generate_redistribute_costs(add_output_strategy, add_output_tgt))
|
| 178 |
+
|
| 179 |
+
# Weight cannot be sharded, so always replicate it.
|
| 180 |
+
weight_tgt = DTensorSpec(
|
| 181 |
+
mesh=mesh,
|
| 182 |
+
placements=(Replicate(), ),
|
| 183 |
+
tensor_meta=weight_src.tensor_meta,
|
| 184 |
+
)
|
| 185 |
+
redistribute_costs.append(
|
| 186 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 187 |
+
|
| 188 |
+
strategy.strategies.append(
|
| 189 |
+
OpSpec(
|
| 190 |
+
output_specs=[
|
| 191 |
+
output_grad_tgt if need_input_grad else None, weight_tgt
|
| 192 |
+
],
|
| 193 |
+
input_specs=[
|
| 194 |
+
output_grad_tgt, add_output_grad_tgt, add_output_tgt,
|
| 195 |
+
weight_tgt
|
| 196 |
+
],
|
| 197 |
+
redistribute_cost=redistribute_costs,
|
| 198 |
+
))
|
| 199 |
+
return strategy
|
build/torch27-cxx11-cu118-x86_64-linux/activation/parallel_style.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.tensor import (DeviceMesh, DTensor, Replicate, Shard,
|
| 8 |
+
distribute_module, distribute_tensor)
|
| 9 |
+
from torch.distributed.tensor.parallel import SequenceParallel
|
| 10 |
+
from torch.distributed.tensor.placement_types import Placement
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ResidualSequenceParallel(SequenceParallel):
|
| 14 |
+
""" Consider the case where we have a residual connection across a sequence parallel layer."""
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 18 |
+
input_tensor = inputs[0]
|
| 19 |
+
residual_tensor = inputs[1]
|
| 20 |
+
|
| 21 |
+
assert isinstance(input_tensor,
|
| 22 |
+
DTensor) == isinstance(residual_tensor, DTensor)
|
| 23 |
+
assert isinstance(input_tensor,
|
| 24 |
+
torch.Tensor) == isinstance(residual_tensor,
|
| 25 |
+
torch.Tensor)
|
| 26 |
+
|
| 27 |
+
if isinstance(input_tensor, DTensor):
|
| 28 |
+
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
|
| 29 |
+
if input_tensor.placements != sequence_sharding:
|
| 30 |
+
input_tensor = input_tensor.redistribute(
|
| 31 |
+
placements=sequence_sharding, async_op=True)
|
| 32 |
+
if residual_tensor.placements != sequence_sharding:
|
| 33 |
+
residual_tensor = residual_tensor.redistribute(
|
| 34 |
+
placements=sequence_sharding, async_op=True)
|
| 35 |
+
return input_tensor, residual_tensor
|
| 36 |
+
|
| 37 |
+
elif isinstance(input_tensor, torch.Tensor):
|
| 38 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 39 |
+
return DTensor.from_local(input_tensor,
|
| 40 |
+
device_mesh,
|
| 41 |
+
sequence_sharding,
|
| 42 |
+
run_check=False), DTensor.from_local(
|
| 43 |
+
residual_tensor,
|
| 44 |
+
device_mesh,
|
| 45 |
+
sequence_sharding,
|
| 46 |
+
run_check=False)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
|
| 50 |
+
)
|
build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
from ._ops import ops
|
| 4 |
|
|
@@ -8,9 +11,7 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 8 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 9 |
@staticmethod
|
| 10 |
def forward(input, weight, eps):
|
| 11 |
-
|
| 12 |
-
ops.rms_norm(output, input, weight, eps)
|
| 13 |
-
return output
|
| 14 |
|
| 15 |
@staticmethod
|
| 16 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
@@ -26,13 +27,8 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 26 |
input, weight = ctx.saved_tensors
|
| 27 |
eps = ctx.eps
|
| 28 |
|
| 29 |
-
input_grad =
|
| 30 |
-
input
|
| 31 |
-
weight_grad = torch.empty_like(
|
| 32 |
-
weight) if ctx.needs_input_grad[1] else None
|
| 33 |
-
|
| 34 |
-
ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
|
| 35 |
-
weight, eps)
|
| 36 |
|
| 37 |
return input_grad, weight_grad, None
|
| 38 |
|
|
@@ -42,10 +38,8 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 42 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 43 |
@staticmethod
|
| 44 |
def forward(input, residual, weight, eps):
|
| 45 |
-
output =
|
| 46 |
-
|
| 47 |
-
ops.fused_add_rms_norm(output, add_output, input, residual, weight,
|
| 48 |
-
eps)
|
| 49 |
return output, add_output
|
| 50 |
|
| 51 |
@staticmethod
|
|
@@ -65,14 +59,47 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 65 |
need_in = ctx.needs_input_grad[0]
|
| 66 |
need_res = ctx.needs_input_grad[1]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
weight_grad =
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
input_grad = grad if need_in else None
|
| 76 |
residual_grad = grad if need_res else None
|
| 77 |
|
| 78 |
return input_grad, residual_grad, weight_grad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
+
from packaging import version
|
| 5 |
|
| 6 |
from ._ops import ops
|
| 7 |
|
|
|
|
| 11 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 12 |
@staticmethod
|
| 13 |
def forward(input, weight, eps):
|
| 14 |
+
return ops.rms_norm(input, weight, eps)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
|
|
| 27 |
input, weight = ctx.saved_tensors
|
| 28 |
eps = ctx.eps
|
| 29 |
|
| 30 |
+
input_grad, weight_grad = ops.rms_norm_backward(
|
| 31 |
+
output_grad, input, weight, eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return input_grad, weight_grad, None
|
| 34 |
|
|
|
|
| 38 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 39 |
@staticmethod
|
| 40 |
def forward(input, residual, weight, eps):
|
| 41 |
+
output, add_output = ops.fused_add_rms_norm(input, residual, weight,
|
| 42 |
+
eps)
|
|
|
|
|
|
|
| 43 |
return output, add_output
|
| 44 |
|
| 45 |
@staticmethod
|
|
|
|
| 59 |
need_in = ctx.needs_input_grad[0]
|
| 60 |
need_res = ctx.needs_input_grad[1]
|
| 61 |
|
| 62 |
+
# TODO(ai-system): kernels currently do not support no input gradients
|
| 63 |
+
assert need_in or need_res, "Not implemented for no input gradients yet"
|
| 64 |
|
| 65 |
+
grad, weight_grad = ops.fused_add_rms_norm_backward(
|
| 66 |
+
output_grad,
|
| 67 |
+
add_output_grad,
|
| 68 |
+
add_output,
|
| 69 |
+
weight,
|
| 70 |
+
eps,
|
| 71 |
+
need_input_grad=need_in or need_res)
|
| 72 |
input_grad = grad if need_in else None
|
| 73 |
residual_grad = grad if need_res else None
|
| 74 |
|
| 75 |
return input_grad, residual_grad, weight_grad, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@torch.library.register_fake(ops.rms_norm.default)
|
| 79 |
+
def rms_norm_abstract(x, weight, eps):
|
| 80 |
+
return torch.empty_like(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@torch.library.register_fake(ops.rms_norm_backward.default)
|
| 84 |
+
def rms_norm_backward_abstract(output_grad, x, weight, eps):
|
| 85 |
+
return torch.empty_like(x), torch.empty_like(weight)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.library.register_fake(ops.fused_add_rms_norm.default)
|
| 89 |
+
def fused_add_rms_norm_abstract(x, residual, weight, eps):
|
| 90 |
+
return torch.empty_like(x), torch.empty_like(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.library.register_fake(ops.fused_add_rms_norm_backward.default)
|
| 94 |
+
def fused_add_rms_norm_backward_abstract(output_grad, add_output_grad,
|
| 95 |
+
add_output, weight, eps,
|
| 96 |
+
need_input_grad: bool):
|
| 97 |
+
return torch.empty_like(
|
| 98 |
+
output_grad) if need_input_grad else None, torch.empty_like(weight)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if version.parse(torch.__version__) >= version.parse("2.8"):
|
| 102 |
+
from .fused_add_rms_norm_meta import register_fused_add_rms_norm_meta
|
| 103 |
+
from .rms_norm_meta import register_rms_norm_meta
|
| 104 |
+
register_fused_add_rms_norm_meta()
|
| 105 |
+
register_rms_norm_meta()
|
build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm_meta.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.rms_norm.default, schema_info=RuntimeSchemaInfo(1))
|
| 34 |
+
def rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 35 |
+
mesh = op_schema.get_mesh_from_args()
|
| 36 |
+
|
| 37 |
+
assert len(op_schema.args_schema) == 3
|
| 38 |
+
(
|
| 39 |
+
input_strategy,
|
| 40 |
+
weight_strategy,
|
| 41 |
+
_, # eps
|
| 42 |
+
) = op_schema.args_schema
|
| 43 |
+
|
| 44 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 45 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 46 |
+
|
| 47 |
+
assert len(input_strategy.strategies) == len(weight_strategy.strategies)
|
| 48 |
+
|
| 49 |
+
last_dim = input_strategy.ndim - 1
|
| 50 |
+
strategy = OpStrategy([])
|
| 51 |
+
for input, weight in zip(input_strategy.strategies,
|
| 52 |
+
weight_strategy.strategies):
|
| 53 |
+
input_src = input.output_spec
|
| 54 |
+
weight_src = weight.output_spec
|
| 55 |
+
|
| 56 |
+
assert isinstance(input_src, DTensorSpec)
|
| 57 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 58 |
+
|
| 59 |
+
redistribute_costs = []
|
| 60 |
+
|
| 61 |
+
# Input can be sharded in any dim except the last dim.
|
| 62 |
+
input_tgt = DTensorSpec(
|
| 63 |
+
mesh=mesh,
|
| 64 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 65 |
+
last_dim),
|
| 66 |
+
tensor_meta=input_src.tensor_meta,
|
| 67 |
+
)
|
| 68 |
+
redistribute_costs.append(
|
| 69 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 70 |
+
|
| 71 |
+
# Weight cannot be sharded, so always replicate it.
|
| 72 |
+
weight_tgt = DTensorSpec(
|
| 73 |
+
mesh=mesh,
|
| 74 |
+
placements=(Replicate(), ),
|
| 75 |
+
tensor_meta=weight_src.tensor_meta,
|
| 76 |
+
)
|
| 77 |
+
redistribute_costs.append(
|
| 78 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 79 |
+
|
| 80 |
+
strategy.strategies.append(
|
| 81 |
+
OpSpec(
|
| 82 |
+
output_specs=input_tgt,
|
| 83 |
+
input_specs=[input_tgt, weight_tgt],
|
| 84 |
+
redistribute_cost=redistribute_costs,
|
| 85 |
+
))
|
| 86 |
+
return strategy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@register_op_strategy(ops.rms_norm_backward.default,
|
| 90 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 91 |
+
def rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 92 |
+
mesh = op_schema.get_mesh_from_args()
|
| 93 |
+
|
| 94 |
+
assert len(op_schema.args_schema) == 4
|
| 95 |
+
(
|
| 96 |
+
output_grad_strategy,
|
| 97 |
+
input_strategy,
|
| 98 |
+
weight_strategy,
|
| 99 |
+
_, # eps
|
| 100 |
+
) = op_schema.args_schema
|
| 101 |
+
|
| 102 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 103 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 104 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 105 |
+
|
| 106 |
+
lengths = {
|
| 107 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 108 |
+
"input": len(input_strategy.strategies),
|
| 109 |
+
"weight": len(weight_strategy.strategies),
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
assert len(set(
|
| 113 |
+
lengths.values())) == 1, f"Strategies length mismatch {lengths}"
|
| 114 |
+
|
| 115 |
+
zipped = zip(
|
| 116 |
+
output_grad_strategy.strategies,
|
| 117 |
+
input_strategy.strategies,
|
| 118 |
+
weight_strategy.strategies,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
last_dim = input_strategy.ndim - 1
|
| 122 |
+
strategy = OpStrategy([])
|
| 123 |
+
for output_grad, input, weight in zipped:
|
| 124 |
+
output_grad_src = output_grad.output_spec
|
| 125 |
+
input_src = input.output_spec
|
| 126 |
+
weight_src = weight.output_spec
|
| 127 |
+
|
| 128 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 129 |
+
assert isinstance(input_src, DTensorSpec)
|
| 130 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 131 |
+
|
| 132 |
+
redistribute_costs = []
|
| 133 |
+
|
| 134 |
+
# Output grad can be sharded in any dim except the last dim.
|
| 135 |
+
output_grad_tgt = DTensorSpec(
|
| 136 |
+
mesh=mesh,
|
| 137 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 138 |
+
last_dim),
|
| 139 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 140 |
+
)
|
| 141 |
+
redistribute_costs.append(
|
| 142 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 143 |
+
|
| 144 |
+
# Input must have the same sharding as output grad.
|
| 145 |
+
input_tgt = output_grad_tgt
|
| 146 |
+
redistribute_costs.append(
|
| 147 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 148 |
+
|
| 149 |
+
# Weight cannot be sharded, so always replicate it.
|
| 150 |
+
weight_tgt = DTensorSpec(
|
| 151 |
+
mesh=mesh,
|
| 152 |
+
placements=(Replicate(), ),
|
| 153 |
+
tensor_meta=weight_src.tensor_meta,
|
| 154 |
+
)
|
| 155 |
+
redistribute_costs.append(
|
| 156 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 157 |
+
|
| 158 |
+
strategy.strategies.append(
|
| 159 |
+
OpSpec(
|
| 160 |
+
output_specs=[input_tgt, weight_tgt],
|
| 161 |
+
input_specs=[output_grad_tgt, input_tgt, weight_tgt],
|
| 162 |
+
redistribute_cost=redistribute_costs,
|
| 163 |
+
))
|
| 164 |
+
return strategy
|
build/torch27-cxx11-cu126-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so → torch27-cxx11-cu126-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef6e4eb51daac20f0d7ed9825052ecca9d8451825784c87d58fa69092c145f35
|
| 3 |
+
size 8793008
|
build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5d3511410cdc288d2fafc500223ed2e625e360f50fa341809cf892fb2c822924
|
| 3 |
-
size 8779000
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:caffcadbb99fbaa27e8a81d5ef508f2e1a798e7626d618c3cf5b0d387d2c8686
|
| 3 |
-
size 4618624
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu126-x86_64-linux/activation/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _activation_53ed492_dirty
|
| 3 |
+
ops = torch.ops._activation_53ed492_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_activation_53ed492_dirty::{op_name}"
|
build/torch27-cxx11-cu126-x86_64-linux/activation/fused_add_rms_norm_meta.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_fused_add_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.fused_add_rms_norm.default,
|
| 34 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 35 |
+
def fused_add_rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 36 |
+
mesh = op_schema.get_mesh_from_args()
|
| 37 |
+
|
| 38 |
+
assert len(op_schema.args_schema) == 4
|
| 39 |
+
(
|
| 40 |
+
input_strategy,
|
| 41 |
+
residual_strategy,
|
| 42 |
+
weight_strategy,
|
| 43 |
+
_, # eps
|
| 44 |
+
) = op_schema.args_schema
|
| 45 |
+
|
| 46 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 47 |
+
assert isinstance(residual_strategy, OpStrategy)
|
| 48 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 49 |
+
|
| 50 |
+
lengths = {
|
| 51 |
+
"input": len(input_strategy.strategies),
|
| 52 |
+
"residual": len(residual_strategy.strategies),
|
| 53 |
+
"weight": len(weight_strategy.strategies),
|
| 54 |
+
}
|
| 55 |
+
assert len(set(
|
| 56 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 57 |
+
|
| 58 |
+
last_dim = input_strategy.ndim - 1
|
| 59 |
+
strategy = OpStrategy([])
|
| 60 |
+
for input, residual, weight in zip(input_strategy.strategies,
|
| 61 |
+
residual_strategy.strategies,
|
| 62 |
+
weight_strategy.strategies):
|
| 63 |
+
|
| 64 |
+
input_src = input.output_spec
|
| 65 |
+
residual_src = residual.output_spec
|
| 66 |
+
weight_src = weight.output_spec
|
| 67 |
+
|
| 68 |
+
assert isinstance(input_src, DTensorSpec)
|
| 69 |
+
assert isinstance(residual_src, DTensorSpec)
|
| 70 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 71 |
+
|
| 72 |
+
redistribute_costs = []
|
| 73 |
+
|
| 74 |
+
# Input can be sharded in any dim except the last dim.
|
| 75 |
+
input_tgt = DTensorSpec(
|
| 76 |
+
mesh=mesh,
|
| 77 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 78 |
+
last_dim),
|
| 79 |
+
tensor_meta=input_src.tensor_meta,
|
| 80 |
+
)
|
| 81 |
+
redistribute_costs.append(
|
| 82 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 83 |
+
|
| 84 |
+
# Residual add must have the same sharding as input.
|
| 85 |
+
residual_tgt = input_tgt
|
| 86 |
+
redistribute_costs.append(
|
| 87 |
+
generate_redistribute_costs(residual_strategy, residual_tgt))
|
| 88 |
+
|
| 89 |
+
# Weight cannot be sharded, so always replicate it.
|
| 90 |
+
weight_tgt = DTensorSpec(
|
| 91 |
+
mesh=mesh,
|
| 92 |
+
placements=(Replicate(), ),
|
| 93 |
+
tensor_meta=weight_src.tensor_meta,
|
| 94 |
+
)
|
| 95 |
+
redistribute_costs.append(
|
| 96 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 97 |
+
|
| 98 |
+
strategy.strategies.append(
|
| 99 |
+
OpSpec(
|
| 100 |
+
output_specs=[input_tgt, input_tgt],
|
| 101 |
+
input_specs=[input_tgt, residual_tgt, weight_tgt],
|
| 102 |
+
redistribute_cost=redistribute_costs,
|
| 103 |
+
))
|
| 104 |
+
return strategy
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@register_op_strategy(ops.fused_add_rms_norm_backward.default,
|
| 108 |
+
schema_info=RuntimeSchemaInfo(2))
|
| 109 |
+
def fused_add_rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 110 |
+
mesh = op_schema.get_mesh_from_args()
|
| 111 |
+
|
| 112 |
+
assert len(op_schema.args_schema) == 6
|
| 113 |
+
(
|
| 114 |
+
output_grad_strategy,
|
| 115 |
+
add_output_grad_strategy,
|
| 116 |
+
add_output_strategy,
|
| 117 |
+
weight_strategy,
|
| 118 |
+
_, # eps
|
| 119 |
+
need_input_grad, # need_input_grad
|
| 120 |
+
) = op_schema.args_schema
|
| 121 |
+
|
| 122 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 123 |
+
assert isinstance(add_output_grad_strategy, OpStrategy)
|
| 124 |
+
assert isinstance(add_output_strategy, OpStrategy)
|
| 125 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 126 |
+
|
| 127 |
+
lengths = {
|
| 128 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 129 |
+
"add_output_grad": len(add_output_grad_strategy.strategies),
|
| 130 |
+
"add_output": len(add_output_strategy.strategies),
|
| 131 |
+
"weight": len(weight_strategy.strategies),
|
| 132 |
+
}
|
| 133 |
+
assert len(set(
|
| 134 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 135 |
+
|
| 136 |
+
zipped = zip(
|
| 137 |
+
output_grad_strategy.strategies,
|
| 138 |
+
add_output_grad_strategy.strategies,
|
| 139 |
+
add_output_strategy.strategies,
|
| 140 |
+
weight_strategy.strategies,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
last_dim = output_grad_strategy.ndim - 1
|
| 144 |
+
strategy = OpStrategy([])
|
| 145 |
+
for output_grad, add_output_grad, add_output, weight in zipped:
|
| 146 |
+
output_grad_src = output_grad.output_spec
|
| 147 |
+
add_output_grad_src = add_output_grad.output_spec
|
| 148 |
+
add_output_src = add_output.output_spec
|
| 149 |
+
weight_src = weight.output_spec
|
| 150 |
+
|
| 151 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 152 |
+
assert isinstance(add_output_grad_src, DTensorSpec)
|
| 153 |
+
assert isinstance(add_output_src, DTensorSpec)
|
| 154 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 155 |
+
|
| 156 |
+
redistribute_costs = []
|
| 157 |
+
|
| 158 |
+
# output grad can be sharded in any dim except the last dim.
|
| 159 |
+
output_grad_tgt = DTensorSpec(
|
| 160 |
+
mesh=mesh,
|
| 161 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 162 |
+
last_dim),
|
| 163 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 164 |
+
)
|
| 165 |
+
redistribute_costs.append(
|
| 166 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 167 |
+
|
| 168 |
+
# add_output_grad must have the same sharding as output_grad.
|
| 169 |
+
add_output_grad_tgt = output_grad_tgt
|
| 170 |
+
redistribute_costs.append(
|
| 171 |
+
generate_redistribute_costs(add_output_grad_strategy,
|
| 172 |
+
add_output_grad_tgt))
|
| 173 |
+
|
| 174 |
+
# add_output must have the same sharding as output_grad.
|
| 175 |
+
add_output_tgt = output_grad_tgt
|
| 176 |
+
redistribute_costs.append(
|
| 177 |
+
generate_redistribute_costs(add_output_strategy, add_output_tgt))
|
| 178 |
+
|
| 179 |
+
# Weight cannot be sharded, so always replicate it.
|
| 180 |
+
weight_tgt = DTensorSpec(
|
| 181 |
+
mesh=mesh,
|
| 182 |
+
placements=(Replicate(), ),
|
| 183 |
+
tensor_meta=weight_src.tensor_meta,
|
| 184 |
+
)
|
| 185 |
+
redistribute_costs.append(
|
| 186 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 187 |
+
|
| 188 |
+
strategy.strategies.append(
|
| 189 |
+
OpSpec(
|
| 190 |
+
output_specs=[
|
| 191 |
+
output_grad_tgt if need_input_grad else None, weight_tgt
|
| 192 |
+
],
|
| 193 |
+
input_specs=[
|
| 194 |
+
output_grad_tgt, add_output_grad_tgt, add_output_tgt,
|
| 195 |
+
weight_tgt
|
| 196 |
+
],
|
| 197 |
+
redistribute_cost=redistribute_costs,
|
| 198 |
+
))
|
| 199 |
+
return strategy
|
build/torch27-cxx11-cu126-x86_64-linux/activation/parallel_style.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.tensor import (DeviceMesh, DTensor, Replicate, Shard,
|
| 8 |
+
distribute_module, distribute_tensor)
|
| 9 |
+
from torch.distributed.tensor.parallel import SequenceParallel
|
| 10 |
+
from torch.distributed.tensor.placement_types import Placement
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ResidualSequenceParallel(SequenceParallel):
|
| 14 |
+
""" Consider the case where we have a residual connection across a sequence parallel layer."""
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 18 |
+
input_tensor = inputs[0]
|
| 19 |
+
residual_tensor = inputs[1]
|
| 20 |
+
|
| 21 |
+
assert isinstance(input_tensor,
|
| 22 |
+
DTensor) == isinstance(residual_tensor, DTensor)
|
| 23 |
+
assert isinstance(input_tensor,
|
| 24 |
+
torch.Tensor) == isinstance(residual_tensor,
|
| 25 |
+
torch.Tensor)
|
| 26 |
+
|
| 27 |
+
if isinstance(input_tensor, DTensor):
|
| 28 |
+
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
|
| 29 |
+
if input_tensor.placements != sequence_sharding:
|
| 30 |
+
input_tensor = input_tensor.redistribute(
|
| 31 |
+
placements=sequence_sharding, async_op=True)
|
| 32 |
+
if residual_tensor.placements != sequence_sharding:
|
| 33 |
+
residual_tensor = residual_tensor.redistribute(
|
| 34 |
+
placements=sequence_sharding, async_op=True)
|
| 35 |
+
return input_tensor, residual_tensor
|
| 36 |
+
|
| 37 |
+
elif isinstance(input_tensor, torch.Tensor):
|
| 38 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 39 |
+
return DTensor.from_local(input_tensor,
|
| 40 |
+
device_mesh,
|
| 41 |
+
sequence_sharding,
|
| 42 |
+
run_check=False), DTensor.from_local(
|
| 43 |
+
residual_tensor,
|
| 44 |
+
device_mesh,
|
| 45 |
+
sequence_sharding,
|
| 46 |
+
run_check=False)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
|
| 50 |
+
)
|
build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
from ._ops import ops
|
| 4 |
|
|
@@ -8,9 +11,7 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 8 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 9 |
@staticmethod
|
| 10 |
def forward(input, weight, eps):
|
| 11 |
-
|
| 12 |
-
ops.rms_norm(output, input, weight, eps)
|
| 13 |
-
return output
|
| 14 |
|
| 15 |
@staticmethod
|
| 16 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
@@ -26,13 +27,8 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 26 |
input, weight = ctx.saved_tensors
|
| 27 |
eps = ctx.eps
|
| 28 |
|
| 29 |
-
input_grad =
|
| 30 |
-
input
|
| 31 |
-
weight_grad = torch.empty_like(
|
| 32 |
-
weight) if ctx.needs_input_grad[1] else None
|
| 33 |
-
|
| 34 |
-
ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
|
| 35 |
-
weight, eps)
|
| 36 |
|
| 37 |
return input_grad, weight_grad, None
|
| 38 |
|
|
@@ -42,10 +38,8 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 42 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 43 |
@staticmethod
|
| 44 |
def forward(input, residual, weight, eps):
|
| 45 |
-
output =
|
| 46 |
-
|
| 47 |
-
ops.fused_add_rms_norm(output, add_output, input, residual, weight,
|
| 48 |
-
eps)
|
| 49 |
return output, add_output
|
| 50 |
|
| 51 |
@staticmethod
|
|
@@ -65,14 +59,47 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 65 |
need_in = ctx.needs_input_grad[0]
|
| 66 |
need_res = ctx.needs_input_grad[1]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
weight_grad =
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
input_grad = grad if need_in else None
|
| 76 |
residual_grad = grad if need_res else None
|
| 77 |
|
| 78 |
return input_grad, residual_grad, weight_grad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
+
from packaging import version
|
| 5 |
|
| 6 |
from ._ops import ops
|
| 7 |
|
|
|
|
| 11 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 12 |
@staticmethod
|
| 13 |
def forward(input, weight, eps):
|
| 14 |
+
return ops.rms_norm(input, weight, eps)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
|
|
| 27 |
input, weight = ctx.saved_tensors
|
| 28 |
eps = ctx.eps
|
| 29 |
|
| 30 |
+
input_grad, weight_grad = ops.rms_norm_backward(
|
| 31 |
+
output_grad, input, weight, eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return input_grad, weight_grad, None
|
| 34 |
|
|
|
|
| 38 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 39 |
@staticmethod
|
| 40 |
def forward(input, residual, weight, eps):
|
| 41 |
+
output, add_output = ops.fused_add_rms_norm(input, residual, weight,
|
| 42 |
+
eps)
|
|
|
|
|
|
|
| 43 |
return output, add_output
|
| 44 |
|
| 45 |
@staticmethod
|
|
|
|
| 59 |
need_in = ctx.needs_input_grad[0]
|
| 60 |
need_res = ctx.needs_input_grad[1]
|
| 61 |
|
| 62 |
+
# TODO(ai-system): kernels currently do not support no input gradients
|
| 63 |
+
assert need_in or need_res, "Not implemented for no input gradients yet"
|
| 64 |
|
| 65 |
+
grad, weight_grad = ops.fused_add_rms_norm_backward(
|
| 66 |
+
output_grad,
|
| 67 |
+
add_output_grad,
|
| 68 |
+
add_output,
|
| 69 |
+
weight,
|
| 70 |
+
eps,
|
| 71 |
+
need_input_grad=need_in or need_res)
|
| 72 |
input_grad = grad if need_in else None
|
| 73 |
residual_grad = grad if need_res else None
|
| 74 |
|
| 75 |
return input_grad, residual_grad, weight_grad, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@torch.library.register_fake(ops.rms_norm.default)
|
| 79 |
+
def rms_norm_abstract(x, weight, eps):
|
| 80 |
+
return torch.empty_like(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@torch.library.register_fake(ops.rms_norm_backward.default)
|
| 84 |
+
def rms_norm_backward_abstract(output_grad, x, weight, eps):
|
| 85 |
+
return torch.empty_like(x), torch.empty_like(weight)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.library.register_fake(ops.fused_add_rms_norm.default)
|
| 89 |
+
def fused_add_rms_norm_abstract(x, residual, weight, eps):
|
| 90 |
+
return torch.empty_like(x), torch.empty_like(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.library.register_fake(ops.fused_add_rms_norm_backward.default)
|
| 94 |
+
def fused_add_rms_norm_backward_abstract(output_grad, add_output_grad,
|
| 95 |
+
add_output, weight, eps,
|
| 96 |
+
need_input_grad: bool):
|
| 97 |
+
return torch.empty_like(
|
| 98 |
+
output_grad) if need_input_grad else None, torch.empty_like(weight)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if version.parse(torch.__version__) >= version.parse("2.8"):
|
| 102 |
+
from .fused_add_rms_norm_meta import register_fused_add_rms_norm_meta
|
| 103 |
+
from .rms_norm_meta import register_rms_norm_meta
|
| 104 |
+
register_fused_add_rms_norm_meta()
|
| 105 |
+
register_rms_norm_meta()
|
build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm_meta.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.rms_norm.default, schema_info=RuntimeSchemaInfo(1))
|
| 34 |
+
def rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 35 |
+
mesh = op_schema.get_mesh_from_args()
|
| 36 |
+
|
| 37 |
+
assert len(op_schema.args_schema) == 3
|
| 38 |
+
(
|
| 39 |
+
input_strategy,
|
| 40 |
+
weight_strategy,
|
| 41 |
+
_, # eps
|
| 42 |
+
) = op_schema.args_schema
|
| 43 |
+
|
| 44 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 45 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 46 |
+
|
| 47 |
+
assert len(input_strategy.strategies) == len(weight_strategy.strategies)
|
| 48 |
+
|
| 49 |
+
last_dim = input_strategy.ndim - 1
|
| 50 |
+
strategy = OpStrategy([])
|
| 51 |
+
for input, weight in zip(input_strategy.strategies,
|
| 52 |
+
weight_strategy.strategies):
|
| 53 |
+
input_src = input.output_spec
|
| 54 |
+
weight_src = weight.output_spec
|
| 55 |
+
|
| 56 |
+
assert isinstance(input_src, DTensorSpec)
|
| 57 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 58 |
+
|
| 59 |
+
redistribute_costs = []
|
| 60 |
+
|
| 61 |
+
# Input can be sharded in any dim except the last dim.
|
| 62 |
+
input_tgt = DTensorSpec(
|
| 63 |
+
mesh=mesh,
|
| 64 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 65 |
+
last_dim),
|
| 66 |
+
tensor_meta=input_src.tensor_meta,
|
| 67 |
+
)
|
| 68 |
+
redistribute_costs.append(
|
| 69 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 70 |
+
|
| 71 |
+
# Weight cannot be sharded, so always replicate it.
|
| 72 |
+
weight_tgt = DTensorSpec(
|
| 73 |
+
mesh=mesh,
|
| 74 |
+
placements=(Replicate(), ),
|
| 75 |
+
tensor_meta=weight_src.tensor_meta,
|
| 76 |
+
)
|
| 77 |
+
redistribute_costs.append(
|
| 78 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 79 |
+
|
| 80 |
+
strategy.strategies.append(
|
| 81 |
+
OpSpec(
|
| 82 |
+
output_specs=input_tgt,
|
| 83 |
+
input_specs=[input_tgt, weight_tgt],
|
| 84 |
+
redistribute_cost=redistribute_costs,
|
| 85 |
+
))
|
| 86 |
+
return strategy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@register_op_strategy(ops.rms_norm_backward.default,
|
| 90 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 91 |
+
def rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 92 |
+
mesh = op_schema.get_mesh_from_args()
|
| 93 |
+
|
| 94 |
+
assert len(op_schema.args_schema) == 4
|
| 95 |
+
(
|
| 96 |
+
output_grad_strategy,
|
| 97 |
+
input_strategy,
|
| 98 |
+
weight_strategy,
|
| 99 |
+
_, # eps
|
| 100 |
+
) = op_schema.args_schema
|
| 101 |
+
|
| 102 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 103 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 104 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 105 |
+
|
| 106 |
+
lengths = {
|
| 107 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 108 |
+
"input": len(input_strategy.strategies),
|
| 109 |
+
"weight": len(weight_strategy.strategies),
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
assert len(set(
|
| 113 |
+
lengths.values())) == 1, f"Strategies length mismatch {lengths}"
|
| 114 |
+
|
| 115 |
+
zipped = zip(
|
| 116 |
+
output_grad_strategy.strategies,
|
| 117 |
+
input_strategy.strategies,
|
| 118 |
+
weight_strategy.strategies,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
last_dim = input_strategy.ndim - 1
|
| 122 |
+
strategy = OpStrategy([])
|
| 123 |
+
for output_grad, input, weight in zipped:
|
| 124 |
+
output_grad_src = output_grad.output_spec
|
| 125 |
+
input_src = input.output_spec
|
| 126 |
+
weight_src = weight.output_spec
|
| 127 |
+
|
| 128 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 129 |
+
assert isinstance(input_src, DTensorSpec)
|
| 130 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 131 |
+
|
| 132 |
+
redistribute_costs = []
|
| 133 |
+
|
| 134 |
+
# Output grad can be sharded in any dim except the last dim.
|
| 135 |
+
output_grad_tgt = DTensorSpec(
|
| 136 |
+
mesh=mesh,
|
| 137 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 138 |
+
last_dim),
|
| 139 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 140 |
+
)
|
| 141 |
+
redistribute_costs.append(
|
| 142 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 143 |
+
|
| 144 |
+
# Input must have the same sharding as output grad.
|
| 145 |
+
input_tgt = output_grad_tgt
|
| 146 |
+
redistribute_costs.append(
|
| 147 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 148 |
+
|
| 149 |
+
# Weight cannot be sharded, so always replicate it.
|
| 150 |
+
weight_tgt = DTensorSpec(
|
| 151 |
+
mesh=mesh,
|
| 152 |
+
placements=(Replicate(), ),
|
| 153 |
+
tensor_meta=weight_src.tensor_meta,
|
| 154 |
+
)
|
| 155 |
+
redistribute_costs.append(
|
| 156 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 157 |
+
|
| 158 |
+
strategy.strategies.append(
|
| 159 |
+
OpSpec(
|
| 160 |
+
output_specs=[input_tgt, weight_tgt],
|
| 161 |
+
input_specs=[output_grad_tgt, input_tgt, weight_tgt],
|
| 162 |
+
redistribute_cost=redistribute_costs,
|
| 163 |
+
))
|
| 164 |
+
return strategy
|
build/torch27-cxx11-cu128-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_20250907180255.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0bf0d2ab5ff5520704e0b0c959b61d0043d360cfd4335950e69677873a87e436
|
| 3 |
-
size 12792112
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0699647f4c0bfc57711e8488dfa3864e7cfdf9119fb743fdaafcb2cbd2cea2c
|
| 3 |
+
size 13836872
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:25efc9c32e4bd6609a8326025aad861cbf79b544893755fe44519c9df7224c40
|
| 3 |
-
size 13818872
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3b7c6ece8e8d316c4cc5fe46b1cec4422b2f61e9bb7240af71a2b4a35975d8e6
|
| 3 |
-
size 6676528
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-cu128-x86_64-linux/activation/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _activation_53ed492_dirty
|
| 3 |
+
ops = torch.ops._activation_53ed492_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_activation_53ed492_dirty::{op_name}"
|
build/torch27-cxx11-cu128-x86_64-linux/activation/fused_add_rms_norm_meta.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_fused_add_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.fused_add_rms_norm.default,
|
| 34 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 35 |
+
def fused_add_rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 36 |
+
mesh = op_schema.get_mesh_from_args()
|
| 37 |
+
|
| 38 |
+
assert len(op_schema.args_schema) == 4
|
| 39 |
+
(
|
| 40 |
+
input_strategy,
|
| 41 |
+
residual_strategy,
|
| 42 |
+
weight_strategy,
|
| 43 |
+
_, # eps
|
| 44 |
+
) = op_schema.args_schema
|
| 45 |
+
|
| 46 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 47 |
+
assert isinstance(residual_strategy, OpStrategy)
|
| 48 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 49 |
+
|
| 50 |
+
lengths = {
|
| 51 |
+
"input": len(input_strategy.strategies),
|
| 52 |
+
"residual": len(residual_strategy.strategies),
|
| 53 |
+
"weight": len(weight_strategy.strategies),
|
| 54 |
+
}
|
| 55 |
+
assert len(set(
|
| 56 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 57 |
+
|
| 58 |
+
last_dim = input_strategy.ndim - 1
|
| 59 |
+
strategy = OpStrategy([])
|
| 60 |
+
for input, residual, weight in zip(input_strategy.strategies,
|
| 61 |
+
residual_strategy.strategies,
|
| 62 |
+
weight_strategy.strategies):
|
| 63 |
+
|
| 64 |
+
input_src = input.output_spec
|
| 65 |
+
residual_src = residual.output_spec
|
| 66 |
+
weight_src = weight.output_spec
|
| 67 |
+
|
| 68 |
+
assert isinstance(input_src, DTensorSpec)
|
| 69 |
+
assert isinstance(residual_src, DTensorSpec)
|
| 70 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 71 |
+
|
| 72 |
+
redistribute_costs = []
|
| 73 |
+
|
| 74 |
+
# Input can be sharded in any dim except the last dim.
|
| 75 |
+
input_tgt = DTensorSpec(
|
| 76 |
+
mesh=mesh,
|
| 77 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 78 |
+
last_dim),
|
| 79 |
+
tensor_meta=input_src.tensor_meta,
|
| 80 |
+
)
|
| 81 |
+
redistribute_costs.append(
|
| 82 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 83 |
+
|
| 84 |
+
# Residual add must have the same sharding as input.
|
| 85 |
+
residual_tgt = input_tgt
|
| 86 |
+
redistribute_costs.append(
|
| 87 |
+
generate_redistribute_costs(residual_strategy, residual_tgt))
|
| 88 |
+
|
| 89 |
+
# Weight cannot be sharded, so always replicate it.
|
| 90 |
+
weight_tgt = DTensorSpec(
|
| 91 |
+
mesh=mesh,
|
| 92 |
+
placements=(Replicate(), ),
|
| 93 |
+
tensor_meta=weight_src.tensor_meta,
|
| 94 |
+
)
|
| 95 |
+
redistribute_costs.append(
|
| 96 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 97 |
+
|
| 98 |
+
strategy.strategies.append(
|
| 99 |
+
OpSpec(
|
| 100 |
+
output_specs=[input_tgt, input_tgt],
|
| 101 |
+
input_specs=[input_tgt, residual_tgt, weight_tgt],
|
| 102 |
+
redistribute_cost=redistribute_costs,
|
| 103 |
+
))
|
| 104 |
+
return strategy
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@register_op_strategy(ops.fused_add_rms_norm_backward.default,
|
| 108 |
+
schema_info=RuntimeSchemaInfo(2))
|
| 109 |
+
def fused_add_rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 110 |
+
mesh = op_schema.get_mesh_from_args()
|
| 111 |
+
|
| 112 |
+
assert len(op_schema.args_schema) == 6
|
| 113 |
+
(
|
| 114 |
+
output_grad_strategy,
|
| 115 |
+
add_output_grad_strategy,
|
| 116 |
+
add_output_strategy,
|
| 117 |
+
weight_strategy,
|
| 118 |
+
_, # eps
|
| 119 |
+
need_input_grad, # need_input_grad
|
| 120 |
+
) = op_schema.args_schema
|
| 121 |
+
|
| 122 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 123 |
+
assert isinstance(add_output_grad_strategy, OpStrategy)
|
| 124 |
+
assert isinstance(add_output_strategy, OpStrategy)
|
| 125 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 126 |
+
|
| 127 |
+
lengths = {
|
| 128 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 129 |
+
"add_output_grad": len(add_output_grad_strategy.strategies),
|
| 130 |
+
"add_output": len(add_output_strategy.strategies),
|
| 131 |
+
"weight": len(weight_strategy.strategies),
|
| 132 |
+
}
|
| 133 |
+
assert len(set(
|
| 134 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 135 |
+
|
| 136 |
+
zipped = zip(
|
| 137 |
+
output_grad_strategy.strategies,
|
| 138 |
+
add_output_grad_strategy.strategies,
|
| 139 |
+
add_output_strategy.strategies,
|
| 140 |
+
weight_strategy.strategies,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
last_dim = output_grad_strategy.ndim - 1
|
| 144 |
+
strategy = OpStrategy([])
|
| 145 |
+
for output_grad, add_output_grad, add_output, weight in zipped:
|
| 146 |
+
output_grad_src = output_grad.output_spec
|
| 147 |
+
add_output_grad_src = add_output_grad.output_spec
|
| 148 |
+
add_output_src = add_output.output_spec
|
| 149 |
+
weight_src = weight.output_spec
|
| 150 |
+
|
| 151 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 152 |
+
assert isinstance(add_output_grad_src, DTensorSpec)
|
| 153 |
+
assert isinstance(add_output_src, DTensorSpec)
|
| 154 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 155 |
+
|
| 156 |
+
redistribute_costs = []
|
| 157 |
+
|
| 158 |
+
# output grad can be sharded in any dim except the last dim.
|
| 159 |
+
output_grad_tgt = DTensorSpec(
|
| 160 |
+
mesh=mesh,
|
| 161 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 162 |
+
last_dim),
|
| 163 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 164 |
+
)
|
| 165 |
+
redistribute_costs.append(
|
| 166 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 167 |
+
|
| 168 |
+
# add_output_grad must have the same sharding as output_grad.
|
| 169 |
+
add_output_grad_tgt = output_grad_tgt
|
| 170 |
+
redistribute_costs.append(
|
| 171 |
+
generate_redistribute_costs(add_output_grad_strategy,
|
| 172 |
+
add_output_grad_tgt))
|
| 173 |
+
|
| 174 |
+
# add_output must have the same sharding as output_grad.
|
| 175 |
+
add_output_tgt = output_grad_tgt
|
| 176 |
+
redistribute_costs.append(
|
| 177 |
+
generate_redistribute_costs(add_output_strategy, add_output_tgt))
|
| 178 |
+
|
| 179 |
+
# Weight cannot be sharded, so always replicate it.
|
| 180 |
+
weight_tgt = DTensorSpec(
|
| 181 |
+
mesh=mesh,
|
| 182 |
+
placements=(Replicate(), ),
|
| 183 |
+
tensor_meta=weight_src.tensor_meta,
|
| 184 |
+
)
|
| 185 |
+
redistribute_costs.append(
|
| 186 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 187 |
+
|
| 188 |
+
strategy.strategies.append(
|
| 189 |
+
OpSpec(
|
| 190 |
+
output_specs=[
|
| 191 |
+
output_grad_tgt if need_input_grad else None, weight_tgt
|
| 192 |
+
],
|
| 193 |
+
input_specs=[
|
| 194 |
+
output_grad_tgt, add_output_grad_tgt, add_output_tgt,
|
| 195 |
+
weight_tgt
|
| 196 |
+
],
|
| 197 |
+
redistribute_cost=redistribute_costs,
|
| 198 |
+
))
|
| 199 |
+
return strategy
|
build/torch27-cxx11-cu128-x86_64-linux/activation/parallel_style.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.tensor import (DeviceMesh, DTensor, Replicate, Shard,
|
| 8 |
+
distribute_module, distribute_tensor)
|
| 9 |
+
from torch.distributed.tensor.parallel import SequenceParallel
|
| 10 |
+
from torch.distributed.tensor.placement_types import Placement
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ResidualSequenceParallel(SequenceParallel):
|
| 14 |
+
""" Consider the case where we have a residual connection across a sequence parallel layer."""
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 18 |
+
input_tensor = inputs[0]
|
| 19 |
+
residual_tensor = inputs[1]
|
| 20 |
+
|
| 21 |
+
assert isinstance(input_tensor,
|
| 22 |
+
DTensor) == isinstance(residual_tensor, DTensor)
|
| 23 |
+
assert isinstance(input_tensor,
|
| 24 |
+
torch.Tensor) == isinstance(residual_tensor,
|
| 25 |
+
torch.Tensor)
|
| 26 |
+
|
| 27 |
+
if isinstance(input_tensor, DTensor):
|
| 28 |
+
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
|
| 29 |
+
if input_tensor.placements != sequence_sharding:
|
| 30 |
+
input_tensor = input_tensor.redistribute(
|
| 31 |
+
placements=sequence_sharding, async_op=True)
|
| 32 |
+
if residual_tensor.placements != sequence_sharding:
|
| 33 |
+
residual_tensor = residual_tensor.redistribute(
|
| 34 |
+
placements=sequence_sharding, async_op=True)
|
| 35 |
+
return input_tensor, residual_tensor
|
| 36 |
+
|
| 37 |
+
elif isinstance(input_tensor, torch.Tensor):
|
| 38 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 39 |
+
return DTensor.from_local(input_tensor,
|
| 40 |
+
device_mesh,
|
| 41 |
+
sequence_sharding,
|
| 42 |
+
run_check=False), DTensor.from_local(
|
| 43 |
+
residual_tensor,
|
| 44 |
+
device_mesh,
|
| 45 |
+
sequence_sharding,
|
| 46 |
+
run_check=False)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
|
| 50 |
+
)
|
build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
from ._ops import ops
|
| 4 |
|
|
@@ -8,9 +11,7 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 8 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 9 |
@staticmethod
|
| 10 |
def forward(input, weight, eps):
|
| 11 |
-
|
| 12 |
-
ops.rms_norm(output, input, weight, eps)
|
| 13 |
-
return output
|
| 14 |
|
| 15 |
@staticmethod
|
| 16 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
@@ -26,13 +27,8 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 26 |
input, weight = ctx.saved_tensors
|
| 27 |
eps = ctx.eps
|
| 28 |
|
| 29 |
-
input_grad =
|
| 30 |
-
input
|
| 31 |
-
weight_grad = torch.empty_like(
|
| 32 |
-
weight) if ctx.needs_input_grad[1] else None
|
| 33 |
-
|
| 34 |
-
ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
|
| 35 |
-
weight, eps)
|
| 36 |
|
| 37 |
return input_grad, weight_grad, None
|
| 38 |
|
|
@@ -42,10 +38,8 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 42 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 43 |
@staticmethod
|
| 44 |
def forward(input, residual, weight, eps):
|
| 45 |
-
output =
|
| 46 |
-
|
| 47 |
-
ops.fused_add_rms_norm(output, add_output, input, residual, weight,
|
| 48 |
-
eps)
|
| 49 |
return output, add_output
|
| 50 |
|
| 51 |
@staticmethod
|
|
@@ -65,14 +59,47 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 65 |
need_in = ctx.needs_input_grad[0]
|
| 66 |
need_res = ctx.needs_input_grad[1]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
weight_grad =
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
input_grad = grad if need_in else None
|
| 76 |
residual_grad = grad if need_res else None
|
| 77 |
|
| 78 |
return input_grad, residual_grad, weight_grad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
+
from packaging import version
|
| 5 |
|
| 6 |
from ._ops import ops
|
| 7 |
|
|
|
|
| 11 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 12 |
@staticmethod
|
| 13 |
def forward(input, weight, eps):
|
| 14 |
+
return ops.rms_norm(input, weight, eps)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
|
|
| 27 |
input, weight = ctx.saved_tensors
|
| 28 |
eps = ctx.eps
|
| 29 |
|
| 30 |
+
input_grad, weight_grad = ops.rms_norm_backward(
|
| 31 |
+
output_grad, input, weight, eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return input_grad, weight_grad, None
|
| 34 |
|
|
|
|
| 38 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 39 |
@staticmethod
|
| 40 |
def forward(input, residual, weight, eps):
|
| 41 |
+
output, add_output = ops.fused_add_rms_norm(input, residual, weight,
|
| 42 |
+
eps)
|
|
|
|
|
|
|
| 43 |
return output, add_output
|
| 44 |
|
| 45 |
@staticmethod
|
|
|
|
| 59 |
need_in = ctx.needs_input_grad[0]
|
| 60 |
need_res = ctx.needs_input_grad[1]
|
| 61 |
|
| 62 |
+
# TODO(ai-system): kernels currently do not support no input gradients
|
| 63 |
+
assert need_in or need_res, "Not implemented for no input gradients yet"
|
| 64 |
|
| 65 |
+
grad, weight_grad = ops.fused_add_rms_norm_backward(
|
| 66 |
+
output_grad,
|
| 67 |
+
add_output_grad,
|
| 68 |
+
add_output,
|
| 69 |
+
weight,
|
| 70 |
+
eps,
|
| 71 |
+
need_input_grad=need_in or need_res)
|
| 72 |
input_grad = grad if need_in else None
|
| 73 |
residual_grad = grad if need_res else None
|
| 74 |
|
| 75 |
return input_grad, residual_grad, weight_grad, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@torch.library.register_fake(ops.rms_norm.default)
|
| 79 |
+
def rms_norm_abstract(x, weight, eps):
|
| 80 |
+
return torch.empty_like(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@torch.library.register_fake(ops.rms_norm_backward.default)
|
| 84 |
+
def rms_norm_backward_abstract(output_grad, x, weight, eps):
|
| 85 |
+
return torch.empty_like(x), torch.empty_like(weight)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.library.register_fake(ops.fused_add_rms_norm.default)
|
| 89 |
+
def fused_add_rms_norm_abstract(x, residual, weight, eps):
|
| 90 |
+
return torch.empty_like(x), torch.empty_like(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.library.register_fake(ops.fused_add_rms_norm_backward.default)
|
| 94 |
+
def fused_add_rms_norm_backward_abstract(output_grad, add_output_grad,
|
| 95 |
+
add_output, weight, eps,
|
| 96 |
+
need_input_grad: bool):
|
| 97 |
+
return torch.empty_like(
|
| 98 |
+
output_grad) if need_input_grad else None, torch.empty_like(weight)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if version.parse(torch.__version__) >= version.parse("2.8"):
|
| 102 |
+
from .fused_add_rms_norm_meta import register_fused_add_rms_norm_meta
|
| 103 |
+
from .rms_norm_meta import register_rms_norm_meta
|
| 104 |
+
register_fused_add_rms_norm_meta()
|
| 105 |
+
register_rms_norm_meta()
|
build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm_meta.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.rms_norm.default, schema_info=RuntimeSchemaInfo(1))
|
| 34 |
+
def rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 35 |
+
mesh = op_schema.get_mesh_from_args()
|
| 36 |
+
|
| 37 |
+
assert len(op_schema.args_schema) == 3
|
| 38 |
+
(
|
| 39 |
+
input_strategy,
|
| 40 |
+
weight_strategy,
|
| 41 |
+
_, # eps
|
| 42 |
+
) = op_schema.args_schema
|
| 43 |
+
|
| 44 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 45 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 46 |
+
|
| 47 |
+
assert len(input_strategy.strategies) == len(weight_strategy.strategies)
|
| 48 |
+
|
| 49 |
+
last_dim = input_strategy.ndim - 1
|
| 50 |
+
strategy = OpStrategy([])
|
| 51 |
+
for input, weight in zip(input_strategy.strategies,
|
| 52 |
+
weight_strategy.strategies):
|
| 53 |
+
input_src = input.output_spec
|
| 54 |
+
weight_src = weight.output_spec
|
| 55 |
+
|
| 56 |
+
assert isinstance(input_src, DTensorSpec)
|
| 57 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 58 |
+
|
| 59 |
+
redistribute_costs = []
|
| 60 |
+
|
| 61 |
+
# Input can be sharded in any dim except the last dim.
|
| 62 |
+
input_tgt = DTensorSpec(
|
| 63 |
+
mesh=mesh,
|
| 64 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 65 |
+
last_dim),
|
| 66 |
+
tensor_meta=input_src.tensor_meta,
|
| 67 |
+
)
|
| 68 |
+
redistribute_costs.append(
|
| 69 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 70 |
+
|
| 71 |
+
# Weight cannot be sharded, so always replicate it.
|
| 72 |
+
weight_tgt = DTensorSpec(
|
| 73 |
+
mesh=mesh,
|
| 74 |
+
placements=(Replicate(), ),
|
| 75 |
+
tensor_meta=weight_src.tensor_meta,
|
| 76 |
+
)
|
| 77 |
+
redistribute_costs.append(
|
| 78 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 79 |
+
|
| 80 |
+
strategy.strategies.append(
|
| 81 |
+
OpSpec(
|
| 82 |
+
output_specs=input_tgt,
|
| 83 |
+
input_specs=[input_tgt, weight_tgt],
|
| 84 |
+
redistribute_cost=redistribute_costs,
|
| 85 |
+
))
|
| 86 |
+
return strategy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@register_op_strategy(ops.rms_norm_backward.default,
|
| 90 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 91 |
+
def rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 92 |
+
mesh = op_schema.get_mesh_from_args()
|
| 93 |
+
|
| 94 |
+
assert len(op_schema.args_schema) == 4
|
| 95 |
+
(
|
| 96 |
+
output_grad_strategy,
|
| 97 |
+
input_strategy,
|
| 98 |
+
weight_strategy,
|
| 99 |
+
_, # eps
|
| 100 |
+
) = op_schema.args_schema
|
| 101 |
+
|
| 102 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 103 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 104 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 105 |
+
|
| 106 |
+
lengths = {
|
| 107 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 108 |
+
"input": len(input_strategy.strategies),
|
| 109 |
+
"weight": len(weight_strategy.strategies),
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
assert len(set(
|
| 113 |
+
lengths.values())) == 1, f"Strategies length mismatch {lengths}"
|
| 114 |
+
|
| 115 |
+
zipped = zip(
|
| 116 |
+
output_grad_strategy.strategies,
|
| 117 |
+
input_strategy.strategies,
|
| 118 |
+
weight_strategy.strategies,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
last_dim = input_strategy.ndim - 1
|
| 122 |
+
strategy = OpStrategy([])
|
| 123 |
+
for output_grad, input, weight in zipped:
|
| 124 |
+
output_grad_src = output_grad.output_spec
|
| 125 |
+
input_src = input.output_spec
|
| 126 |
+
weight_src = weight.output_spec
|
| 127 |
+
|
| 128 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 129 |
+
assert isinstance(input_src, DTensorSpec)
|
| 130 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 131 |
+
|
| 132 |
+
redistribute_costs = []
|
| 133 |
+
|
| 134 |
+
# Output grad can be sharded in any dim except the last dim.
|
| 135 |
+
output_grad_tgt = DTensorSpec(
|
| 136 |
+
mesh=mesh,
|
| 137 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 138 |
+
last_dim),
|
| 139 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 140 |
+
)
|
| 141 |
+
redistribute_costs.append(
|
| 142 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 143 |
+
|
| 144 |
+
# Input must have the same sharding as output grad.
|
| 145 |
+
input_tgt = output_grad_tgt
|
| 146 |
+
redistribute_costs.append(
|
| 147 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 148 |
+
|
| 149 |
+
# Weight cannot be sharded, so always replicate it.
|
| 150 |
+
weight_tgt = DTensorSpec(
|
| 151 |
+
mesh=mesh,
|
| 152 |
+
placements=(Replicate(), ),
|
| 153 |
+
tensor_meta=weight_src.tensor_meta,
|
| 154 |
+
)
|
| 155 |
+
redistribute_costs.append(
|
| 156 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 157 |
+
|
| 158 |
+
strategy.strategies.append(
|
| 159 |
+
OpSpec(
|
| 160 |
+
output_specs=[input_tgt, weight_tgt],
|
| 161 |
+
input_specs=[output_grad_tgt, input_tgt, weight_tgt],
|
| 162 |
+
redistribute_cost=redistribute_costs,
|
| 163 |
+
))
|
| 164 |
+
return strategy
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_20250907180255.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:640322a8fac8fd9d8e9f195a3034c4ee0f81ee1acf897fd7c482a84ce47a1bec
|
| 3 |
-
size 4160688
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch27-cxx11-cu118-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so → torch27-cxx11-rocm63-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d973bad96565705f9e27514a9dbfb37343d0220da4a3ae7156b1cf6a27813643
|
| 3 |
+
size 2773952
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c80d05690547f2842d416ebb85c9f830370373bc7e6c54ba08eec61b3690280f
|
| 3 |
-
size 4386744
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:4be173820e2a4bf4b6b8de6b63faf6544b599d9b0583f650a940adaef4a048b3
|
| 3 |
-
size 2899184
|
|
|
|
|
|
|
|
|
|
|
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _activation_53ed492_dirty
|
| 3 |
+
ops = torch.ops._activation_53ed492_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_activation_53ed492_dirty::{op_name}"
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/fused_add_rms_norm_meta.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_fused_add_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.fused_add_rms_norm.default,
|
| 34 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 35 |
+
def fused_add_rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 36 |
+
mesh = op_schema.get_mesh_from_args()
|
| 37 |
+
|
| 38 |
+
assert len(op_schema.args_schema) == 4
|
| 39 |
+
(
|
| 40 |
+
input_strategy,
|
| 41 |
+
residual_strategy,
|
| 42 |
+
weight_strategy,
|
| 43 |
+
_, # eps
|
| 44 |
+
) = op_schema.args_schema
|
| 45 |
+
|
| 46 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 47 |
+
assert isinstance(residual_strategy, OpStrategy)
|
| 48 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 49 |
+
|
| 50 |
+
lengths = {
|
| 51 |
+
"input": len(input_strategy.strategies),
|
| 52 |
+
"residual": len(residual_strategy.strategies),
|
| 53 |
+
"weight": len(weight_strategy.strategies),
|
| 54 |
+
}
|
| 55 |
+
assert len(set(
|
| 56 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 57 |
+
|
| 58 |
+
last_dim = input_strategy.ndim - 1
|
| 59 |
+
strategy = OpStrategy([])
|
| 60 |
+
for input, residual, weight in zip(input_strategy.strategies,
|
| 61 |
+
residual_strategy.strategies,
|
| 62 |
+
weight_strategy.strategies):
|
| 63 |
+
|
| 64 |
+
input_src = input.output_spec
|
| 65 |
+
residual_src = residual.output_spec
|
| 66 |
+
weight_src = weight.output_spec
|
| 67 |
+
|
| 68 |
+
assert isinstance(input_src, DTensorSpec)
|
| 69 |
+
assert isinstance(residual_src, DTensorSpec)
|
| 70 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 71 |
+
|
| 72 |
+
redistribute_costs = []
|
| 73 |
+
|
| 74 |
+
# Input can be sharded in any dim except the last dim.
|
| 75 |
+
input_tgt = DTensorSpec(
|
| 76 |
+
mesh=mesh,
|
| 77 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 78 |
+
last_dim),
|
| 79 |
+
tensor_meta=input_src.tensor_meta,
|
| 80 |
+
)
|
| 81 |
+
redistribute_costs.append(
|
| 82 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 83 |
+
|
| 84 |
+
# Residual add must have the same sharding as input.
|
| 85 |
+
residual_tgt = input_tgt
|
| 86 |
+
redistribute_costs.append(
|
| 87 |
+
generate_redistribute_costs(residual_strategy, residual_tgt))
|
| 88 |
+
|
| 89 |
+
# Weight cannot be sharded, so always replicate it.
|
| 90 |
+
weight_tgt = DTensorSpec(
|
| 91 |
+
mesh=mesh,
|
| 92 |
+
placements=(Replicate(), ),
|
| 93 |
+
tensor_meta=weight_src.tensor_meta,
|
| 94 |
+
)
|
| 95 |
+
redistribute_costs.append(
|
| 96 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 97 |
+
|
| 98 |
+
strategy.strategies.append(
|
| 99 |
+
OpSpec(
|
| 100 |
+
output_specs=[input_tgt, input_tgt],
|
| 101 |
+
input_specs=[input_tgt, residual_tgt, weight_tgt],
|
| 102 |
+
redistribute_cost=redistribute_costs,
|
| 103 |
+
))
|
| 104 |
+
return strategy
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@register_op_strategy(ops.fused_add_rms_norm_backward.default,
|
| 108 |
+
schema_info=RuntimeSchemaInfo(2))
|
| 109 |
+
def fused_add_rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 110 |
+
mesh = op_schema.get_mesh_from_args()
|
| 111 |
+
|
| 112 |
+
assert len(op_schema.args_schema) == 6
|
| 113 |
+
(
|
| 114 |
+
output_grad_strategy,
|
| 115 |
+
add_output_grad_strategy,
|
| 116 |
+
add_output_strategy,
|
| 117 |
+
weight_strategy,
|
| 118 |
+
_, # eps
|
| 119 |
+
need_input_grad, # need_input_grad
|
| 120 |
+
) = op_schema.args_schema
|
| 121 |
+
|
| 122 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 123 |
+
assert isinstance(add_output_grad_strategy, OpStrategy)
|
| 124 |
+
assert isinstance(add_output_strategy, OpStrategy)
|
| 125 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 126 |
+
|
| 127 |
+
lengths = {
|
| 128 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 129 |
+
"add_output_grad": len(add_output_grad_strategy.strategies),
|
| 130 |
+
"add_output": len(add_output_strategy.strategies),
|
| 131 |
+
"weight": len(weight_strategy.strategies),
|
| 132 |
+
}
|
| 133 |
+
assert len(set(
|
| 134 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 135 |
+
|
| 136 |
+
zipped = zip(
|
| 137 |
+
output_grad_strategy.strategies,
|
| 138 |
+
add_output_grad_strategy.strategies,
|
| 139 |
+
add_output_strategy.strategies,
|
| 140 |
+
weight_strategy.strategies,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
last_dim = output_grad_strategy.ndim - 1
|
| 144 |
+
strategy = OpStrategy([])
|
| 145 |
+
for output_grad, add_output_grad, add_output, weight in zipped:
|
| 146 |
+
output_grad_src = output_grad.output_spec
|
| 147 |
+
add_output_grad_src = add_output_grad.output_spec
|
| 148 |
+
add_output_src = add_output.output_spec
|
| 149 |
+
weight_src = weight.output_spec
|
| 150 |
+
|
| 151 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 152 |
+
assert isinstance(add_output_grad_src, DTensorSpec)
|
| 153 |
+
assert isinstance(add_output_src, DTensorSpec)
|
| 154 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 155 |
+
|
| 156 |
+
redistribute_costs = []
|
| 157 |
+
|
| 158 |
+
# output grad can be sharded in any dim except the last dim.
|
| 159 |
+
output_grad_tgt = DTensorSpec(
|
| 160 |
+
mesh=mesh,
|
| 161 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 162 |
+
last_dim),
|
| 163 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 164 |
+
)
|
| 165 |
+
redistribute_costs.append(
|
| 166 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 167 |
+
|
| 168 |
+
# add_output_grad must have the same sharding as output_grad.
|
| 169 |
+
add_output_grad_tgt = output_grad_tgt
|
| 170 |
+
redistribute_costs.append(
|
| 171 |
+
generate_redistribute_costs(add_output_grad_strategy,
|
| 172 |
+
add_output_grad_tgt))
|
| 173 |
+
|
| 174 |
+
# add_output must have the same sharding as output_grad.
|
| 175 |
+
add_output_tgt = output_grad_tgt
|
| 176 |
+
redistribute_costs.append(
|
| 177 |
+
generate_redistribute_costs(add_output_strategy, add_output_tgt))
|
| 178 |
+
|
| 179 |
+
# Weight cannot be sharded, so always replicate it.
|
| 180 |
+
weight_tgt = DTensorSpec(
|
| 181 |
+
mesh=mesh,
|
| 182 |
+
placements=(Replicate(), ),
|
| 183 |
+
tensor_meta=weight_src.tensor_meta,
|
| 184 |
+
)
|
| 185 |
+
redistribute_costs.append(
|
| 186 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 187 |
+
|
| 188 |
+
strategy.strategies.append(
|
| 189 |
+
OpSpec(
|
| 190 |
+
output_specs=[
|
| 191 |
+
output_grad_tgt if need_input_grad else None, weight_tgt
|
| 192 |
+
],
|
| 193 |
+
input_specs=[
|
| 194 |
+
output_grad_tgt, add_output_grad_tgt, add_output_tgt,
|
| 195 |
+
weight_tgt
|
| 196 |
+
],
|
| 197 |
+
redistribute_cost=redistribute_costs,
|
| 198 |
+
))
|
| 199 |
+
return strategy
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/parallel_style.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.tensor import (DeviceMesh, DTensor, Replicate, Shard,
|
| 8 |
+
distribute_module, distribute_tensor)
|
| 9 |
+
from torch.distributed.tensor.parallel import SequenceParallel
|
| 10 |
+
from torch.distributed.tensor.placement_types import Placement
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ResidualSequenceParallel(SequenceParallel):
|
| 14 |
+
""" Consider the case where we have a residual connection across a sequence parallel layer."""
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 18 |
+
input_tensor = inputs[0]
|
| 19 |
+
residual_tensor = inputs[1]
|
| 20 |
+
|
| 21 |
+
assert isinstance(input_tensor,
|
| 22 |
+
DTensor) == isinstance(residual_tensor, DTensor)
|
| 23 |
+
assert isinstance(input_tensor,
|
| 24 |
+
torch.Tensor) == isinstance(residual_tensor,
|
| 25 |
+
torch.Tensor)
|
| 26 |
+
|
| 27 |
+
if isinstance(input_tensor, DTensor):
|
| 28 |
+
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
|
| 29 |
+
if input_tensor.placements != sequence_sharding:
|
| 30 |
+
input_tensor = input_tensor.redistribute(
|
| 31 |
+
placements=sequence_sharding, async_op=True)
|
| 32 |
+
if residual_tensor.placements != sequence_sharding:
|
| 33 |
+
residual_tensor = residual_tensor.redistribute(
|
| 34 |
+
placements=sequence_sharding, async_op=True)
|
| 35 |
+
return input_tensor, residual_tensor
|
| 36 |
+
|
| 37 |
+
elif isinstance(input_tensor, torch.Tensor):
|
| 38 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 39 |
+
return DTensor.from_local(input_tensor,
|
| 40 |
+
device_mesh,
|
| 41 |
+
sequence_sharding,
|
| 42 |
+
run_check=False), DTensor.from_local(
|
| 43 |
+
residual_tensor,
|
| 44 |
+
device_mesh,
|
| 45 |
+
sequence_sharding,
|
| 46 |
+
run_check=False)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
|
| 50 |
+
)
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
from ._ops import ops
|
| 4 |
|
|
@@ -8,9 +11,7 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 8 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 9 |
@staticmethod
|
| 10 |
def forward(input, weight, eps):
|
| 11 |
-
|
| 12 |
-
ops.rms_norm(output, input, weight, eps)
|
| 13 |
-
return output
|
| 14 |
|
| 15 |
@staticmethod
|
| 16 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
@@ -26,13 +27,8 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 26 |
input, weight = ctx.saved_tensors
|
| 27 |
eps = ctx.eps
|
| 28 |
|
| 29 |
-
input_grad =
|
| 30 |
-
input
|
| 31 |
-
weight_grad = torch.empty_like(
|
| 32 |
-
weight) if ctx.needs_input_grad[1] else None
|
| 33 |
-
|
| 34 |
-
ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
|
| 35 |
-
weight, eps)
|
| 36 |
|
| 37 |
return input_grad, weight_grad, None
|
| 38 |
|
|
@@ -42,10 +38,8 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 42 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 43 |
@staticmethod
|
| 44 |
def forward(input, residual, weight, eps):
|
| 45 |
-
output =
|
| 46 |
-
|
| 47 |
-
ops.fused_add_rms_norm(output, add_output, input, residual, weight,
|
| 48 |
-
eps)
|
| 49 |
return output, add_output
|
| 50 |
|
| 51 |
@staticmethod
|
|
@@ -65,14 +59,47 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 65 |
need_in = ctx.needs_input_grad[0]
|
| 66 |
need_res = ctx.needs_input_grad[1]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
weight_grad =
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
input_grad = grad if need_in else None
|
| 76 |
residual_grad = grad if need_res else None
|
| 77 |
|
| 78 |
return input_grad, residual_grad, weight_grad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
+
from packaging import version
|
| 5 |
|
| 6 |
from ._ops import ops
|
| 7 |
|
|
|
|
| 11 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 12 |
@staticmethod
|
| 13 |
def forward(input, weight, eps):
|
| 14 |
+
return ops.rms_norm(input, weight, eps)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
|
|
| 27 |
input, weight = ctx.saved_tensors
|
| 28 |
eps = ctx.eps
|
| 29 |
|
| 30 |
+
input_grad, weight_grad = ops.rms_norm_backward(
|
| 31 |
+
output_grad, input, weight, eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return input_grad, weight_grad, None
|
| 34 |
|
|
|
|
| 38 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 39 |
@staticmethod
|
| 40 |
def forward(input, residual, weight, eps):
|
| 41 |
+
output, add_output = ops.fused_add_rms_norm(input, residual, weight,
|
| 42 |
+
eps)
|
|
|
|
|
|
|
| 43 |
return output, add_output
|
| 44 |
|
| 45 |
@staticmethod
|
|
|
|
| 59 |
need_in = ctx.needs_input_grad[0]
|
| 60 |
need_res = ctx.needs_input_grad[1]
|
| 61 |
|
| 62 |
+
# TODO(ai-system): kernels currently do not support no input gradients
|
| 63 |
+
assert need_in or need_res, "Not implemented for no input gradients yet"
|
| 64 |
|
| 65 |
+
grad, weight_grad = ops.fused_add_rms_norm_backward(
|
| 66 |
+
output_grad,
|
| 67 |
+
add_output_grad,
|
| 68 |
+
add_output,
|
| 69 |
+
weight,
|
| 70 |
+
eps,
|
| 71 |
+
need_input_grad=need_in or need_res)
|
| 72 |
input_grad = grad if need_in else None
|
| 73 |
residual_grad = grad if need_res else None
|
| 74 |
|
| 75 |
return input_grad, residual_grad, weight_grad, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@torch.library.register_fake(ops.rms_norm.default)
|
| 79 |
+
def rms_norm_abstract(x, weight, eps):
|
| 80 |
+
return torch.empty_like(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@torch.library.register_fake(ops.rms_norm_backward.default)
|
| 84 |
+
def rms_norm_backward_abstract(output_grad, x, weight, eps):
|
| 85 |
+
return torch.empty_like(x), torch.empty_like(weight)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.library.register_fake(ops.fused_add_rms_norm.default)
|
| 89 |
+
def fused_add_rms_norm_abstract(x, residual, weight, eps):
|
| 90 |
+
return torch.empty_like(x), torch.empty_like(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.library.register_fake(ops.fused_add_rms_norm_backward.default)
|
| 94 |
+
def fused_add_rms_norm_backward_abstract(output_grad, add_output_grad,
|
| 95 |
+
add_output, weight, eps,
|
| 96 |
+
need_input_grad: bool):
|
| 97 |
+
return torch.empty_like(
|
| 98 |
+
output_grad) if need_input_grad else None, torch.empty_like(weight)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if version.parse(torch.__version__) >= version.parse("2.8"):
|
| 102 |
+
from .fused_add_rms_norm_meta import register_fused_add_rms_norm_meta
|
| 103 |
+
from .rms_norm_meta import register_rms_norm_meta
|
| 104 |
+
register_fused_add_rms_norm_meta()
|
| 105 |
+
register_rms_norm_meta()
|
build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm_meta.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.rms_norm.default, schema_info=RuntimeSchemaInfo(1))
|
| 34 |
+
def rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 35 |
+
mesh = op_schema.get_mesh_from_args()
|
| 36 |
+
|
| 37 |
+
assert len(op_schema.args_schema) == 3
|
| 38 |
+
(
|
| 39 |
+
input_strategy,
|
| 40 |
+
weight_strategy,
|
| 41 |
+
_, # eps
|
| 42 |
+
) = op_schema.args_schema
|
| 43 |
+
|
| 44 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 45 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 46 |
+
|
| 47 |
+
assert len(input_strategy.strategies) == len(weight_strategy.strategies)
|
| 48 |
+
|
| 49 |
+
last_dim = input_strategy.ndim - 1
|
| 50 |
+
strategy = OpStrategy([])
|
| 51 |
+
for input, weight in zip(input_strategy.strategies,
|
| 52 |
+
weight_strategy.strategies):
|
| 53 |
+
input_src = input.output_spec
|
| 54 |
+
weight_src = weight.output_spec
|
| 55 |
+
|
| 56 |
+
assert isinstance(input_src, DTensorSpec)
|
| 57 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 58 |
+
|
| 59 |
+
redistribute_costs = []
|
| 60 |
+
|
| 61 |
+
# Input can be sharded in any dim except the last dim.
|
| 62 |
+
input_tgt = DTensorSpec(
|
| 63 |
+
mesh=mesh,
|
| 64 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 65 |
+
last_dim),
|
| 66 |
+
tensor_meta=input_src.tensor_meta,
|
| 67 |
+
)
|
| 68 |
+
redistribute_costs.append(
|
| 69 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 70 |
+
|
| 71 |
+
# Weight cannot be sharded, so always replicate it.
|
| 72 |
+
weight_tgt = DTensorSpec(
|
| 73 |
+
mesh=mesh,
|
| 74 |
+
placements=(Replicate(), ),
|
| 75 |
+
tensor_meta=weight_src.tensor_meta,
|
| 76 |
+
)
|
| 77 |
+
redistribute_costs.append(
|
| 78 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 79 |
+
|
| 80 |
+
strategy.strategies.append(
|
| 81 |
+
OpSpec(
|
| 82 |
+
output_specs=input_tgt,
|
| 83 |
+
input_specs=[input_tgt, weight_tgt],
|
| 84 |
+
redistribute_cost=redistribute_costs,
|
| 85 |
+
))
|
| 86 |
+
return strategy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@register_op_strategy(ops.rms_norm_backward.default,
|
| 90 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 91 |
+
def rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 92 |
+
mesh = op_schema.get_mesh_from_args()
|
| 93 |
+
|
| 94 |
+
assert len(op_schema.args_schema) == 4
|
| 95 |
+
(
|
| 96 |
+
output_grad_strategy,
|
| 97 |
+
input_strategy,
|
| 98 |
+
weight_strategy,
|
| 99 |
+
_, # eps
|
| 100 |
+
) = op_schema.args_schema
|
| 101 |
+
|
| 102 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 103 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 104 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 105 |
+
|
| 106 |
+
lengths = {
|
| 107 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 108 |
+
"input": len(input_strategy.strategies),
|
| 109 |
+
"weight": len(weight_strategy.strategies),
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
assert len(set(
|
| 113 |
+
lengths.values())) == 1, f"Strategies length mismatch {lengths}"
|
| 114 |
+
|
| 115 |
+
zipped = zip(
|
| 116 |
+
output_grad_strategy.strategies,
|
| 117 |
+
input_strategy.strategies,
|
| 118 |
+
weight_strategy.strategies,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
last_dim = input_strategy.ndim - 1
|
| 122 |
+
strategy = OpStrategy([])
|
| 123 |
+
for output_grad, input, weight in zipped:
|
| 124 |
+
output_grad_src = output_grad.output_spec
|
| 125 |
+
input_src = input.output_spec
|
| 126 |
+
weight_src = weight.output_spec
|
| 127 |
+
|
| 128 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 129 |
+
assert isinstance(input_src, DTensorSpec)
|
| 130 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 131 |
+
|
| 132 |
+
redistribute_costs = []
|
| 133 |
+
|
| 134 |
+
# Output grad can be sharded in any dim except the last dim.
|
| 135 |
+
output_grad_tgt = DTensorSpec(
|
| 136 |
+
mesh=mesh,
|
| 137 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 138 |
+
last_dim),
|
| 139 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 140 |
+
)
|
| 141 |
+
redistribute_costs.append(
|
| 142 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 143 |
+
|
| 144 |
+
# Input must have the same sharding as output grad.
|
| 145 |
+
input_tgt = output_grad_tgt
|
| 146 |
+
redistribute_costs.append(
|
| 147 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 148 |
+
|
| 149 |
+
# Weight cannot be sharded, so always replicate it.
|
| 150 |
+
weight_tgt = DTensorSpec(
|
| 151 |
+
mesh=mesh,
|
| 152 |
+
placements=(Replicate(), ),
|
| 153 |
+
tensor_meta=weight_src.tensor_meta,
|
| 154 |
+
)
|
| 155 |
+
redistribute_costs.append(
|
| 156 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 157 |
+
|
| 158 |
+
strategy.strategies.append(
|
| 159 |
+
OpSpec(
|
| 160 |
+
output_specs=[input_tgt, weight_tgt],
|
| 161 |
+
input_specs=[output_grad_tgt, input_tgt, weight_tgt],
|
| 162 |
+
redistribute_cost=redistribute_costs,
|
| 163 |
+
))
|
| 164 |
+
return strategy
|
build/torch28-cxx11-cu126-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_20250907180255.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1768d8d5072ac06d937cb5332988c6b3bfaa191f72d1369a22d2c577e9a3bca2
|
| 3 |
-
size 8215280
|
|
|
|
|
|
|
|
|
|
|
|
build/{torch27-cxx11-cu126-x86_64-linux/activation/_activation_20250907180255.abi3.so → torch28-cxx11-cu126-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so}
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c301db3d37625ebf0cecf016948ec18fbeddb497acca8c870d2d8eff0a1d1203
|
| 3 |
+
size 8735952
|
build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:440f5c17a7ddaf73c506bbc84fd1405e2e188b8ceaf4977910608be6b91e89bf
|
| 3 |
-
size 8730200
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:cb222449350310f90f7271f34fcf9052c9eec28021fee0348130a8f239a97bf4
|
| 3 |
-
size 4571976
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-cu126-x86_64-linux/activation/_ops.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import torch
|
| 2 |
-
from . import
|
| 3 |
-
ops = torch.ops.
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
-
return f"
|
|
|
|
| 1 |
import torch
|
| 2 |
+
from . import _activation_53ed492_dirty
|
| 3 |
+
ops = torch.ops._activation_53ed492_dirty
|
| 4 |
|
| 5 |
def add_op_namespace_prefix(op_name: str):
|
| 6 |
"""
|
| 7 |
Prefix op by namespace.
|
| 8 |
"""
|
| 9 |
+
return f"_activation_53ed492_dirty::{op_name}"
|
build/torch28-cxx11-cu126-x86_64-linux/activation/fused_add_rms_norm_meta.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_fused_add_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.fused_add_rms_norm.default,
|
| 34 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 35 |
+
def fused_add_rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 36 |
+
mesh = op_schema.get_mesh_from_args()
|
| 37 |
+
|
| 38 |
+
assert len(op_schema.args_schema) == 4
|
| 39 |
+
(
|
| 40 |
+
input_strategy,
|
| 41 |
+
residual_strategy,
|
| 42 |
+
weight_strategy,
|
| 43 |
+
_, # eps
|
| 44 |
+
) = op_schema.args_schema
|
| 45 |
+
|
| 46 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 47 |
+
assert isinstance(residual_strategy, OpStrategy)
|
| 48 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 49 |
+
|
| 50 |
+
lengths = {
|
| 51 |
+
"input": len(input_strategy.strategies),
|
| 52 |
+
"residual": len(residual_strategy.strategies),
|
| 53 |
+
"weight": len(weight_strategy.strategies),
|
| 54 |
+
}
|
| 55 |
+
assert len(set(
|
| 56 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 57 |
+
|
| 58 |
+
last_dim = input_strategy.ndim - 1
|
| 59 |
+
strategy = OpStrategy([])
|
| 60 |
+
for input, residual, weight in zip(input_strategy.strategies,
|
| 61 |
+
residual_strategy.strategies,
|
| 62 |
+
weight_strategy.strategies):
|
| 63 |
+
|
| 64 |
+
input_src = input.output_spec
|
| 65 |
+
residual_src = residual.output_spec
|
| 66 |
+
weight_src = weight.output_spec
|
| 67 |
+
|
| 68 |
+
assert isinstance(input_src, DTensorSpec)
|
| 69 |
+
assert isinstance(residual_src, DTensorSpec)
|
| 70 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 71 |
+
|
| 72 |
+
redistribute_costs = []
|
| 73 |
+
|
| 74 |
+
# Input can be sharded in any dim except the last dim.
|
| 75 |
+
input_tgt = DTensorSpec(
|
| 76 |
+
mesh=mesh,
|
| 77 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 78 |
+
last_dim),
|
| 79 |
+
tensor_meta=input_src.tensor_meta,
|
| 80 |
+
)
|
| 81 |
+
redistribute_costs.append(
|
| 82 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 83 |
+
|
| 84 |
+
# Residual add must have the same sharding as input.
|
| 85 |
+
residual_tgt = input_tgt
|
| 86 |
+
redistribute_costs.append(
|
| 87 |
+
generate_redistribute_costs(residual_strategy, residual_tgt))
|
| 88 |
+
|
| 89 |
+
# Weight cannot be sharded, so always replicate it.
|
| 90 |
+
weight_tgt = DTensorSpec(
|
| 91 |
+
mesh=mesh,
|
| 92 |
+
placements=(Replicate(), ),
|
| 93 |
+
tensor_meta=weight_src.tensor_meta,
|
| 94 |
+
)
|
| 95 |
+
redistribute_costs.append(
|
| 96 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 97 |
+
|
| 98 |
+
strategy.strategies.append(
|
| 99 |
+
OpSpec(
|
| 100 |
+
output_specs=[input_tgt, input_tgt],
|
| 101 |
+
input_specs=[input_tgt, residual_tgt, weight_tgt],
|
| 102 |
+
redistribute_cost=redistribute_costs,
|
| 103 |
+
))
|
| 104 |
+
return strategy
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@register_op_strategy(ops.fused_add_rms_norm_backward.default,
|
| 108 |
+
schema_info=RuntimeSchemaInfo(2))
|
| 109 |
+
def fused_add_rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 110 |
+
mesh = op_schema.get_mesh_from_args()
|
| 111 |
+
|
| 112 |
+
assert len(op_schema.args_schema) == 6
|
| 113 |
+
(
|
| 114 |
+
output_grad_strategy,
|
| 115 |
+
add_output_grad_strategy,
|
| 116 |
+
add_output_strategy,
|
| 117 |
+
weight_strategy,
|
| 118 |
+
_, # eps
|
| 119 |
+
need_input_grad, # need_input_grad
|
| 120 |
+
) = op_schema.args_schema
|
| 121 |
+
|
| 122 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 123 |
+
assert isinstance(add_output_grad_strategy, OpStrategy)
|
| 124 |
+
assert isinstance(add_output_strategy, OpStrategy)
|
| 125 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 126 |
+
|
| 127 |
+
lengths = {
|
| 128 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 129 |
+
"add_output_grad": len(add_output_grad_strategy.strategies),
|
| 130 |
+
"add_output": len(add_output_strategy.strategies),
|
| 131 |
+
"weight": len(weight_strategy.strategies),
|
| 132 |
+
}
|
| 133 |
+
assert len(set(
|
| 134 |
+
lengths.values())) == 1, f"Strategy length mismatch: {lengths}"
|
| 135 |
+
|
| 136 |
+
zipped = zip(
|
| 137 |
+
output_grad_strategy.strategies,
|
| 138 |
+
add_output_grad_strategy.strategies,
|
| 139 |
+
add_output_strategy.strategies,
|
| 140 |
+
weight_strategy.strategies,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
last_dim = output_grad_strategy.ndim - 1
|
| 144 |
+
strategy = OpStrategy([])
|
| 145 |
+
for output_grad, add_output_grad, add_output, weight in zipped:
|
| 146 |
+
output_grad_src = output_grad.output_spec
|
| 147 |
+
add_output_grad_src = add_output_grad.output_spec
|
| 148 |
+
add_output_src = add_output.output_spec
|
| 149 |
+
weight_src = weight.output_spec
|
| 150 |
+
|
| 151 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 152 |
+
assert isinstance(add_output_grad_src, DTensorSpec)
|
| 153 |
+
assert isinstance(add_output_src, DTensorSpec)
|
| 154 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 155 |
+
|
| 156 |
+
redistribute_costs = []
|
| 157 |
+
|
| 158 |
+
# output grad can be sharded in any dim except the last dim.
|
| 159 |
+
output_grad_tgt = DTensorSpec(
|
| 160 |
+
mesh=mesh,
|
| 161 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 162 |
+
last_dim),
|
| 163 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 164 |
+
)
|
| 165 |
+
redistribute_costs.append(
|
| 166 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 167 |
+
|
| 168 |
+
# add_output_grad must have the same sharding as output_grad.
|
| 169 |
+
add_output_grad_tgt = output_grad_tgt
|
| 170 |
+
redistribute_costs.append(
|
| 171 |
+
generate_redistribute_costs(add_output_grad_strategy,
|
| 172 |
+
add_output_grad_tgt))
|
| 173 |
+
|
| 174 |
+
# add_output must have the same sharding as output_grad.
|
| 175 |
+
add_output_tgt = output_grad_tgt
|
| 176 |
+
redistribute_costs.append(
|
| 177 |
+
generate_redistribute_costs(add_output_strategy, add_output_tgt))
|
| 178 |
+
|
| 179 |
+
# Weight cannot be sharded, so always replicate it.
|
| 180 |
+
weight_tgt = DTensorSpec(
|
| 181 |
+
mesh=mesh,
|
| 182 |
+
placements=(Replicate(), ),
|
| 183 |
+
tensor_meta=weight_src.tensor_meta,
|
| 184 |
+
)
|
| 185 |
+
redistribute_costs.append(
|
| 186 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 187 |
+
|
| 188 |
+
strategy.strategies.append(
|
| 189 |
+
OpSpec(
|
| 190 |
+
output_specs=[
|
| 191 |
+
output_grad_tgt if need_input_grad else None, weight_tgt
|
| 192 |
+
],
|
| 193 |
+
input_specs=[
|
| 194 |
+
output_grad_tgt, add_output_grad_tgt, add_output_tgt,
|
| 195 |
+
weight_tgt
|
| 196 |
+
],
|
| 197 |
+
redistribute_cost=redistribute_costs,
|
| 198 |
+
))
|
| 199 |
+
return strategy
|
build/torch28-cxx11-cu126-x86_64-linux/activation/parallel_style.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from functools import partial
|
| 3 |
+
from typing import Any, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from torch.distributed.tensor import (DeviceMesh, DTensor, Replicate, Shard,
|
| 8 |
+
distribute_module, distribute_tensor)
|
| 9 |
+
from torch.distributed.tensor.parallel import SequenceParallel
|
| 10 |
+
from torch.distributed.tensor.placement_types import Placement
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ResidualSequenceParallel(SequenceParallel):
|
| 14 |
+
""" Consider the case where we have a residual connection across a sequence parallel layer."""
|
| 15 |
+
|
| 16 |
+
@staticmethod
|
| 17 |
+
def _prepare_input_fn(sequence_sharding, mod, inputs, device_mesh):
|
| 18 |
+
input_tensor = inputs[0]
|
| 19 |
+
residual_tensor = inputs[1]
|
| 20 |
+
|
| 21 |
+
assert isinstance(input_tensor,
|
| 22 |
+
DTensor) == isinstance(residual_tensor, DTensor)
|
| 23 |
+
assert isinstance(input_tensor,
|
| 24 |
+
torch.Tensor) == isinstance(residual_tensor,
|
| 25 |
+
torch.Tensor)
|
| 26 |
+
|
| 27 |
+
if isinstance(input_tensor, DTensor):
|
| 28 |
+
# if the passed in input DTensor is not sharded on the sequence dim, we need to redistribute it
|
| 29 |
+
if input_tensor.placements != sequence_sharding:
|
| 30 |
+
input_tensor = input_tensor.redistribute(
|
| 31 |
+
placements=sequence_sharding, async_op=True)
|
| 32 |
+
if residual_tensor.placements != sequence_sharding:
|
| 33 |
+
residual_tensor = residual_tensor.redistribute(
|
| 34 |
+
placements=sequence_sharding, async_op=True)
|
| 35 |
+
return input_tensor, residual_tensor
|
| 36 |
+
|
| 37 |
+
elif isinstance(input_tensor, torch.Tensor):
|
| 38 |
+
# assume the input passed in already sharded on the sequence dim and create the DTensor
|
| 39 |
+
return DTensor.from_local(input_tensor,
|
| 40 |
+
device_mesh,
|
| 41 |
+
sequence_sharding,
|
| 42 |
+
run_check=False), DTensor.from_local(
|
| 43 |
+
residual_tensor,
|
| 44 |
+
device_mesh,
|
| 45 |
+
sequence_sharding,
|
| 46 |
+
run_check=False)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(
|
| 49 |
+
f"expecting input of {mod} to be a torch.Tensor or DTensor, but got {input_tensor}"
|
| 50 |
+
)
|
build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
|
| 3 |
from ._ops import ops
|
| 4 |
|
|
@@ -8,9 +11,7 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 8 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 9 |
@staticmethod
|
| 10 |
def forward(input, weight, eps):
|
| 11 |
-
|
| 12 |
-
ops.rms_norm(output, input, weight, eps)
|
| 13 |
-
return output
|
| 14 |
|
| 15 |
@staticmethod
|
| 16 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
@@ -26,13 +27,8 @@ class RMSNormFunction(torch.autograd.Function):
|
|
| 26 |
input, weight = ctx.saved_tensors
|
| 27 |
eps = ctx.eps
|
| 28 |
|
| 29 |
-
input_grad =
|
| 30 |
-
input
|
| 31 |
-
weight_grad = torch.empty_like(
|
| 32 |
-
weight) if ctx.needs_input_grad[1] else None
|
| 33 |
-
|
| 34 |
-
ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
|
| 35 |
-
weight, eps)
|
| 36 |
|
| 37 |
return input_grad, weight_grad, None
|
| 38 |
|
|
@@ -42,10 +38,8 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 42 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 43 |
@staticmethod
|
| 44 |
def forward(input, residual, weight, eps):
|
| 45 |
-
output =
|
| 46 |
-
|
| 47 |
-
ops.fused_add_rms_norm(output, add_output, input, residual, weight,
|
| 48 |
-
eps)
|
| 49 |
return output, add_output
|
| 50 |
|
| 51 |
@staticmethod
|
|
@@ -65,14 +59,47 @@ class FusedAddRMSNormFunction(torch.autograd.Function):
|
|
| 65 |
need_in = ctx.needs_input_grad[0]
|
| 66 |
need_res = ctx.needs_input_grad[1]
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
weight_grad =
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
input_grad = grad if need_in else None
|
| 76 |
residual_grad = grad if need_res else None
|
| 77 |
|
| 78 |
return input_grad, residual_grad, weight_grad, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
+
from packaging import version
|
| 5 |
|
| 6 |
from ._ops import ops
|
| 7 |
|
|
|
|
| 11 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 12 |
@staticmethod
|
| 13 |
def forward(input, weight, eps):
|
| 14 |
+
return ops.rms_norm(input, weight, eps)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
@staticmethod
|
| 17 |
# inputs is a Tuple of all of the inputs passed to forward.
|
|
|
|
| 27 |
input, weight = ctx.saved_tensors
|
| 28 |
eps = ctx.eps
|
| 29 |
|
| 30 |
+
input_grad, weight_grad = ops.rms_norm_backward(
|
| 31 |
+
output_grad, input, weight, eps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return input_grad, weight_grad, None
|
| 34 |
|
|
|
|
| 38 |
# Note that forward, setup_context, and backward are @staticmethods
|
| 39 |
@staticmethod
|
| 40 |
def forward(input, residual, weight, eps):
|
| 41 |
+
output, add_output = ops.fused_add_rms_norm(input, residual, weight,
|
| 42 |
+
eps)
|
|
|
|
|
|
|
| 43 |
return output, add_output
|
| 44 |
|
| 45 |
@staticmethod
|
|
|
|
| 59 |
need_in = ctx.needs_input_grad[0]
|
| 60 |
need_res = ctx.needs_input_grad[1]
|
| 61 |
|
| 62 |
+
# TODO(ai-system): kernels currently do not support no input gradients
|
| 63 |
+
assert need_in or need_res, "Not implemented for no input gradients yet"
|
| 64 |
|
| 65 |
+
grad, weight_grad = ops.fused_add_rms_norm_backward(
|
| 66 |
+
output_grad,
|
| 67 |
+
add_output_grad,
|
| 68 |
+
add_output,
|
| 69 |
+
weight,
|
| 70 |
+
eps,
|
| 71 |
+
need_input_grad=need_in or need_res)
|
| 72 |
input_grad = grad if need_in else None
|
| 73 |
residual_grad = grad if need_res else None
|
| 74 |
|
| 75 |
return input_grad, residual_grad, weight_grad, None
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@torch.library.register_fake(ops.rms_norm.default)
|
| 79 |
+
def rms_norm_abstract(x, weight, eps):
|
| 80 |
+
return torch.empty_like(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@torch.library.register_fake(ops.rms_norm_backward.default)
|
| 84 |
+
def rms_norm_backward_abstract(output_grad, x, weight, eps):
|
| 85 |
+
return torch.empty_like(x), torch.empty_like(weight)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@torch.library.register_fake(ops.fused_add_rms_norm.default)
|
| 89 |
+
def fused_add_rms_norm_abstract(x, residual, weight, eps):
|
| 90 |
+
return torch.empty_like(x), torch.empty_like(x)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@torch.library.register_fake(ops.fused_add_rms_norm_backward.default)
|
| 94 |
+
def fused_add_rms_norm_backward_abstract(output_grad, add_output_grad,
|
| 95 |
+
add_output, weight, eps,
|
| 96 |
+
need_input_grad: bool):
|
| 97 |
+
return torch.empty_like(
|
| 98 |
+
output_grad) if need_input_grad else None, torch.empty_like(weight)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if version.parse(torch.__version__) >= version.parse("2.8"):
|
| 102 |
+
from .fused_add_rms_norm_meta import register_fused_add_rms_norm_meta
|
| 103 |
+
from .rms_norm_meta import register_rms_norm_meta
|
| 104 |
+
register_fused_add_rms_norm_meta()
|
| 105 |
+
register_rms_norm_meta()
|
build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm_meta.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections.abc import Sequence
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributed.tensor._dtensor_spec import DTensorSpec
|
| 5 |
+
from torch.distributed.tensor._op_schema import (OpSchema, OpSpec, OpStrategy,
|
| 6 |
+
RuntimeSchemaInfo)
|
| 7 |
+
from torch.distributed.tensor._ops.utils import (generate_redistribute_costs,
|
| 8 |
+
register_op_strategy)
|
| 9 |
+
from torch.distributed.tensor.placement_types import (Placement, Replicate,
|
| 10 |
+
Shard)
|
| 11 |
+
|
| 12 |
+
from ._ops import ops
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def register_rms_norm_meta():
|
| 16 |
+
"""Dummy function to register the meta functions.
|
| 17 |
+
Registration happens at import time by the decorators below.
|
| 18 |
+
"""
|
| 19 |
+
pass
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def _replicate_dims_start_at(placements: Sequence[Placement],
|
| 23 |
+
start_dim: int = 0) -> tuple[Placement, ...]:
|
| 24 |
+
new_placements: list[Placement] = []
|
| 25 |
+
for p in placements:
|
| 26 |
+
if p.is_partial() or (isinstance(p, Shard) and p.dim >= start_dim):
|
| 27 |
+
new_placements.append(Replicate()) # make it replicate
|
| 28 |
+
else:
|
| 29 |
+
new_placements.append(p) # keep the placement
|
| 30 |
+
return tuple(new_placements)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@register_op_strategy(ops.rms_norm.default, schema_info=RuntimeSchemaInfo(1))
|
| 34 |
+
def rms_norm_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 35 |
+
mesh = op_schema.get_mesh_from_args()
|
| 36 |
+
|
| 37 |
+
assert len(op_schema.args_schema) == 3
|
| 38 |
+
(
|
| 39 |
+
input_strategy,
|
| 40 |
+
weight_strategy,
|
| 41 |
+
_, # eps
|
| 42 |
+
) = op_schema.args_schema
|
| 43 |
+
|
| 44 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 45 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 46 |
+
|
| 47 |
+
assert len(input_strategy.strategies) == len(weight_strategy.strategies)
|
| 48 |
+
|
| 49 |
+
last_dim = input_strategy.ndim - 1
|
| 50 |
+
strategy = OpStrategy([])
|
| 51 |
+
for input, weight in zip(input_strategy.strategies,
|
| 52 |
+
weight_strategy.strategies):
|
| 53 |
+
input_src = input.output_spec
|
| 54 |
+
weight_src = weight.output_spec
|
| 55 |
+
|
| 56 |
+
assert isinstance(input_src, DTensorSpec)
|
| 57 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 58 |
+
|
| 59 |
+
redistribute_costs = []
|
| 60 |
+
|
| 61 |
+
# Input can be sharded in any dim except the last dim.
|
| 62 |
+
input_tgt = DTensorSpec(
|
| 63 |
+
mesh=mesh,
|
| 64 |
+
placements=_replicate_dims_start_at(input_src.placements,
|
| 65 |
+
last_dim),
|
| 66 |
+
tensor_meta=input_src.tensor_meta,
|
| 67 |
+
)
|
| 68 |
+
redistribute_costs.append(
|
| 69 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 70 |
+
|
| 71 |
+
# Weight cannot be sharded, so always replicate it.
|
| 72 |
+
weight_tgt = DTensorSpec(
|
| 73 |
+
mesh=mesh,
|
| 74 |
+
placements=(Replicate(), ),
|
| 75 |
+
tensor_meta=weight_src.tensor_meta,
|
| 76 |
+
)
|
| 77 |
+
redistribute_costs.append(
|
| 78 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 79 |
+
|
| 80 |
+
strategy.strategies.append(
|
| 81 |
+
OpSpec(
|
| 82 |
+
output_specs=input_tgt,
|
| 83 |
+
input_specs=[input_tgt, weight_tgt],
|
| 84 |
+
redistribute_cost=redistribute_costs,
|
| 85 |
+
))
|
| 86 |
+
return strategy
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@register_op_strategy(ops.rms_norm_backward.default,
|
| 90 |
+
schema_info=RuntimeSchemaInfo(1))
|
| 91 |
+
def rms_norm_backward_strategy(op_schema: OpSchema) -> OpStrategy:
|
| 92 |
+
mesh = op_schema.get_mesh_from_args()
|
| 93 |
+
|
| 94 |
+
assert len(op_schema.args_schema) == 4
|
| 95 |
+
(
|
| 96 |
+
output_grad_strategy,
|
| 97 |
+
input_strategy,
|
| 98 |
+
weight_strategy,
|
| 99 |
+
_, # eps
|
| 100 |
+
) = op_schema.args_schema
|
| 101 |
+
|
| 102 |
+
assert isinstance(output_grad_strategy, OpStrategy)
|
| 103 |
+
assert isinstance(input_strategy, OpStrategy)
|
| 104 |
+
assert isinstance(weight_strategy, OpStrategy)
|
| 105 |
+
|
| 106 |
+
lengths = {
|
| 107 |
+
"output_grad": len(output_grad_strategy.strategies),
|
| 108 |
+
"input": len(input_strategy.strategies),
|
| 109 |
+
"weight": len(weight_strategy.strategies),
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
assert len(set(
|
| 113 |
+
lengths.values())) == 1, f"Strategies length mismatch {lengths}"
|
| 114 |
+
|
| 115 |
+
zipped = zip(
|
| 116 |
+
output_grad_strategy.strategies,
|
| 117 |
+
input_strategy.strategies,
|
| 118 |
+
weight_strategy.strategies,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
last_dim = input_strategy.ndim - 1
|
| 122 |
+
strategy = OpStrategy([])
|
| 123 |
+
for output_grad, input, weight in zipped:
|
| 124 |
+
output_grad_src = output_grad.output_spec
|
| 125 |
+
input_src = input.output_spec
|
| 126 |
+
weight_src = weight.output_spec
|
| 127 |
+
|
| 128 |
+
assert isinstance(output_grad_src, DTensorSpec)
|
| 129 |
+
assert isinstance(input_src, DTensorSpec)
|
| 130 |
+
assert isinstance(weight_src, DTensorSpec)
|
| 131 |
+
|
| 132 |
+
redistribute_costs = []
|
| 133 |
+
|
| 134 |
+
# Output grad can be sharded in any dim except the last dim.
|
| 135 |
+
output_grad_tgt = DTensorSpec(
|
| 136 |
+
mesh=mesh,
|
| 137 |
+
placements=_replicate_dims_start_at(output_grad_src.placements,
|
| 138 |
+
last_dim),
|
| 139 |
+
tensor_meta=output_grad_src.tensor_meta,
|
| 140 |
+
)
|
| 141 |
+
redistribute_costs.append(
|
| 142 |
+
generate_redistribute_costs(output_grad_strategy, output_grad_tgt))
|
| 143 |
+
|
| 144 |
+
# Input must have the same sharding as output grad.
|
| 145 |
+
input_tgt = output_grad_tgt
|
| 146 |
+
redistribute_costs.append(
|
| 147 |
+
generate_redistribute_costs(input_strategy, input_tgt))
|
| 148 |
+
|
| 149 |
+
# Weight cannot be sharded, so always replicate it.
|
| 150 |
+
weight_tgt = DTensorSpec(
|
| 151 |
+
mesh=mesh,
|
| 152 |
+
placements=(Replicate(), ),
|
| 153 |
+
tensor_meta=weight_src.tensor_meta,
|
| 154 |
+
)
|
| 155 |
+
redistribute_costs.append(
|
| 156 |
+
generate_redistribute_costs(weight_strategy, weight_tgt))
|
| 157 |
+
|
| 158 |
+
strategy.strategies.append(
|
| 159 |
+
OpSpec(
|
| 160 |
+
output_specs=[input_tgt, weight_tgt],
|
| 161 |
+
input_specs=[output_grad_tgt, input_tgt, weight_tgt],
|
| 162 |
+
redistribute_cost=redistribute_costs,
|
| 163 |
+
))
|
| 164 |
+
return strategy
|
build/torch28-cxx11-cu128-x86_64-linux/activation/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
-
from . import layers
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
@@ -48,5 +48,6 @@ __all__ = [
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
|
|
|
| 51 |
"ops",
|
| 52 |
]
|
|
|
|
| 1 |
import torch
|
| 2 |
|
| 3 |
+
from . import layers, parallel_style
|
| 4 |
from ._ops import ops
|
| 5 |
from .poly_norm import FusedMulPolyNormFunction, PolyNormFunction
|
| 6 |
from .rms_norm import FusedAddRMSNormFunction, RMSNormFunction
|
|
|
|
| 48 |
"rms_norm",
|
| 49 |
"fused_add_rms_norm",
|
| 50 |
"layers",
|
| 51 |
+
"parallel_style",
|
| 52 |
"ops",
|
| 53 |
]
|
build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_20250907180255.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:37a572bd877980ab8c0331ca5682191cb5a2b1f05bc69ea493a9e24f7728ba3f
|
| 3 |
-
size 12730840
|
|
|
|
|
|
|
|
|
|
|
|
build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_53ed492_dirty.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f7879c74d91f2412bbf5524cd107dea64edeeeabf1dd496eeefa627d2e7143c
|
| 3 |
+
size 13775752
|
build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_e5e2eeb_dirty.abi3.so
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:1dfb6d468f9cef0239d4ea47f0a247fa721befc5b8db86e1cddfc25f1814b67a
|
| 3 |
-
size 13770064
|
|
|
|
|
|
|
|
|
|
|
|