Kernels
TaehyunKimMotif commited on
Commit
56776ac
·
1 Parent(s): f517c97
Files changed (50) hide show
  1. build/torch27-cxx11-cu118-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} +2 -2
  2. build/torch27-cxx11-cu118-x86_64-linux/activation/_ops.py +3 -3
  3. build/torch27-cxx11-cu118-x86_64-linux/activation/layers.py +2 -0
  4. build/torch27-cxx11-cu118-x86_64-linux/activation/poly_norm.py +9 -11
  5. build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm.py +6 -3
  6. build/torch27-cxx11-cu126-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} +2 -2
  7. build/torch27-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
  8. build/torch27-cxx11-cu126-x86_64-linux/activation/layers.py +2 -0
  9. build/torch27-cxx11-cu126-x86_64-linux/activation/poly_norm.py +9 -11
  10. build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm.py +6 -3
  11. build/torch27-cxx11-cu128-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} +2 -2
  12. build/torch27-cxx11-cu128-x86_64-linux/activation/_ops.py +3 -3
  13. build/torch27-cxx11-cu128-x86_64-linux/activation/layers.py +2 -0
  14. build/torch27-cxx11-cu128-x86_64-linux/activation/poly_norm.py +9 -11
  15. build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm.py +6 -3
  16. build/torch27-cxx11-rocm63-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} +2 -2
  17. build/torch27-cxx11-rocm63-x86_64-linux/activation/_ops.py +3 -3
  18. build/torch27-cxx11-rocm63-x86_64-linux/activation/layers.py +2 -0
  19. build/torch27-cxx11-rocm63-x86_64-linux/activation/poly_norm.py +9 -11
  20. build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm.py +6 -3
  21. build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so +0 -3
  22. build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +3 -0
  23. build/torch28-cxx11-cu126-x86_64-linux/activation/_ops.py +3 -3
  24. build/torch28-cxx11-cu126-x86_64-linux/activation/layers.py +2 -0
  25. build/torch28-cxx11-cu126-x86_64-linux/activation/poly_norm.py +9 -11
  26. build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm.py +6 -3
  27. build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so +0 -3
  28. build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +3 -0
  29. build/torch28-cxx11-cu128-x86_64-linux/activation/_ops.py +3 -3
  30. build/torch28-cxx11-cu128-x86_64-linux/activation/layers.py +2 -0
  31. build/torch28-cxx11-cu128-x86_64-linux/activation/poly_norm.py +9 -11
  32. build/torch28-cxx11-cu128-x86_64-linux/activation/rms_norm.py +6 -3
  33. build/torch28-cxx11-cu129-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so +0 -3
  34. build/torch28-cxx11-cu129-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +3 -0
  35. build/torch28-cxx11-cu129-x86_64-linux/activation/_ops.py +3 -3
  36. build/torch28-cxx11-cu129-x86_64-linux/activation/layers.py +2 -0
  37. build/torch28-cxx11-cu129-x86_64-linux/activation/poly_norm.py +9 -11
  38. build/torch28-cxx11-cu129-x86_64-linux/activation/rms_norm.py +6 -3
  39. build/torch28-cxx11-rocm63-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so +0 -3
  40. build/torch28-cxx11-rocm63-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +3 -0
  41. build/torch28-cxx11-rocm63-x86_64-linux/activation/_ops.py +3 -3
  42. build/torch28-cxx11-rocm63-x86_64-linux/activation/layers.py +2 -0
  43. build/torch28-cxx11-rocm63-x86_64-linux/activation/poly_norm.py +9 -11
  44. build/torch28-cxx11-rocm63-x86_64-linux/activation/rms_norm.py +6 -3
  45. build/torch28-cxx11-rocm64-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so +0 -3
  46. build/torch28-cxx11-rocm64-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so +3 -0
  47. build/torch28-cxx11-rocm64-x86_64-linux/activation/_ops.py +3 -3
  48. build/torch28-cxx11-rocm64-x86_64-linux/activation/layers.py +2 -0
  49. build/torch28-cxx11-rocm64-x86_64-linux/activation/poly_norm.py +9 -11
  50. build/torch28-cxx11-rocm64-x86_64-linux/activation/rms_norm.py +6 -3
build/torch27-cxx11-cu118-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1655e52503ce7d0b7dabd55b97c1bd7d11071cbe0f80b9e810c443523638fd9b
3
- size 2994312
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd84c828d4c15e96d65d6c8f0eb7a945ee8167d92e978b2ebce03eeaf41e7fce
3
+ size 4405112
build/torch27-cxx11-cu118-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch27-cxx11-cu118-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch27-cxx11-cu118-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch27-cxx11-cu118-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch27-cxx11-cu126-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:174dbe4375aa22fb34d9d23630b3bec4eeb95635ef681b665db0985e78cf5af3
3
- size 3027504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caffcadbb99fbaa27e8a81d5ef508f2e1a798e7626d618c3cf5b0d387d2c8686
3
+ size 4618624
build/torch27-cxx11-cu126-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch27-cxx11-cu126-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch27-cxx11-cu126-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch27-cxx11-cu126-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch27-cxx11-cu128-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:91d71ca84a19b393c22b269226a7b4ddadbf1feec73a80bd45f655179c7a53f5
3
- size 3987512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7c6ece8e8d316c4cc5fe46b1cec4422b2f61e9bb7240af71a2b4a35975d8e6
3
+ size 6676528
build/torch27-cxx11-cu128-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch27-cxx11-cu128-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch27-cxx11-cu128-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch27-cxx11-cu128-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch27-cxx11-rocm63-x86_64-linux/activation/{_activation_cf68df1_dirty.abi3.so → _activation_f517c97_dirty.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ab1037bf6b41bf2be1d00a6a0ed01a97a5e4d64dd0abaf509492ad31eea0a576
3
- size 2642976
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be173820e2a4bf4b6b8de6b63faf6544b599d9b0583f650a940adaef4a048b3
3
+ size 2899184
build/torch27-cxx11-rocm63-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch27-cxx11-rocm63-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch27-cxx11-rocm63-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch27-cxx11-rocm63-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:012788f2064588edf60df24778dff33f8ca95e3b1aaf5243554735cd783dd7ed
3
- size 3032488
 
 
 
 
build/torch28-cxx11-cu126-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb222449350310f90f7271f34fcf9052c9eec28021fee0348130a8f239a97bf4
3
+ size 4571976
build/torch28-cxx11-cu126-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch28-cxx11-cu126-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch28-cxx11-cu126-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch28-cxx11-cu126-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1a65b79b750f550a09e6a1142b5151b03b2a60ec6115a264e6d8de3cac7ee5d
3
- size 4000920
 
 
 
 
build/torch28-cxx11-cu128-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79be6527f579de1133e50a66310d7d0690649dcac63009a54b5e68809408f12a
3
+ size 6634208
build/torch28-cxx11-cu128-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch28-cxx11-cu128-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch28-cxx11-cu128-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch28-cxx11-cu128-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch28-cxx11-cu129-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd38039c3401b0f6a136f1761c7f396f5954f05e16d78ed1600d8325c1221781
3
- size 4059256
 
 
 
 
build/torch28-cxx11-cu129-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d95e4491d35cb022a6eaa2febbc555f203893f989a4fb1cc483b2632f141869
3
+ size 6687456
build/torch28-cxx11-cu129-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch28-cxx11-cu129-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch28-cxx11-cu129-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch28-cxx11-cu129-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch28-cxx11-rocm63-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8a75fc3e8648bbab973e3021720ed372ec8468f7a28b5b047640fd7198ab369
3
- size 2647872
 
 
 
 
build/torch28-cxx11-rocm63-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58116124bb2b5d11de2753dd0c30a1e4c84759f18599da7016c791bad37528e9
3
+ size 2899984
build/torch28-cxx11-rocm63-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch28-cxx11-rocm63-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch28-cxx11-rocm63-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch28-cxx11-rocm63-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None
build/torch28-cxx11-rocm64-x86_64-linux/activation/_activation_cf68df1_dirty.abi3.so DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cccb0567a8f86f1f9e23a653a2e1f7177f4528cb1ecf8cbec42e40c60392eb39
3
- size 2633232
 
 
 
 
build/torch28-cxx11-rocm64-x86_64-linux/activation/_activation_f517c97_dirty.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65319d3d93ac3bf0f2939fa4e53ddfc8cd633b9e396cde3a97d63b9041ba03a7
3
+ size 2885344
build/torch28-cxx11-rocm64-x86_64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_cf68df1_dirty
3
- ops = torch.ops._activation_cf68df1_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_cf68df1_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_f517c97_dirty
3
+ ops = torch.ops._activation_f517c97_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_f517c97_dirty::{op_name}"
build/torch28-cxx11-rocm64-x86_64-linux/activation/layers.py CHANGED
@@ -7,6 +7,7 @@ from .rms_norm import RMSNormFunction
7
 
8
 
9
  class PolyNorm(nn.Module):
 
10
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
11
  super().__init__()
12
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
@@ -28,6 +29,7 @@ class PolyNorm(nn.Module):
28
 
29
 
30
  class RMSNorm(nn.Module):
 
31
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
32
  super().__init__()
33
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
 
7
 
8
 
9
  class PolyNorm(nn.Module):
10
+
11
  def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32):
12
  super().__init__()
13
  self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3)
 
29
 
30
 
31
  class RMSNorm(nn.Module):
32
+
33
  def __init__(self, dim: int, eps=1e-6, dtype: torch.dtype = torch.float32):
34
  super().__init__()
35
  self.weight = torch.nn.Parameter(torch.ones(dim, dtype=dtype))
build/torch28-cxx11-rocm64-x86_64-linux/activation/poly_norm.py CHANGED
@@ -26,16 +26,14 @@ class PolyNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
31
- bias_grad = (
32
- torch.empty(1, dtype=weight.dtype, device=weight.device)
33
- if ctx.needs_input_grad[2]
34
- else None
35
- )
36
-
37
- ops.poly_norm_backward(
38
- input_grad, weight_grad, bias_grad, output_grad, input, weight, eps
39
- )
40
 
41
  return input_grad, weight_grad, bias_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
+ bias_grad = (torch.empty(1, dtype=weight.dtype, device=weight.device)
34
+ if ctx.needs_input_grad[2] else None)
35
+
36
+ ops.poly_norm_backward(input_grad, weight_grad, bias_grad, output_grad,
37
+ input, weight, eps)
 
 
38
 
39
  return input_grad, weight_grad, bias_grad, None
build/torch28-cxx11-rocm64-x86_64-linux/activation/rms_norm.py CHANGED
@@ -26,9 +26,12 @@ class RMSNormFunction(torch.autograd.Function):
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
- input_grad = torch.empty_like(input) if ctx.needs_input_grad[0] else None
30
- weight_grad = torch.empty_like(weight) if ctx.needs_input_grad[1] else None
 
 
31
 
32
- ops.rms_norm_backward(input_grad, weight_grad, output_grad, input, weight, eps)
 
33
 
34
  return input_grad, weight_grad, None
 
26
  input, weight = ctx.saved_tensors
27
  eps = ctx.eps
28
 
29
+ input_grad = torch.empty_like(
30
+ input) if ctx.needs_input_grad[0] else None
31
+ weight_grad = torch.empty_like(
32
+ weight) if ctx.needs_input_grad[1] else None
33
 
34
+ ops.rms_norm_backward(input_grad, weight_grad, output_grad, input,
35
+ weight, eps)
36
 
37
  return input_grad, weight_grad, None