File size: 21,338 Bytes
4ba4c08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
import torch
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
StoppingCriteria,
BitsAndBytesConfig
)
import gradio as gr
import argparse
import os
from queue import Queue
from threading import Thread
import traceback
import gc
import json
import requests
from typing import Iterable, List
import subprocess
import re
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant.Help as much as you can."""
TEMPLATE_WITH_SYSTEM_PROMPT = (
"[INST] <<SYS>>\n"
"{system_prompt}\n"
"<</SYS>>\n\n"
"{instruction} [/INST]"
)
TEMPLATE_WITHOUT_SYSTEM_PROMPT = "[INST] {instruction} [/INST]"
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
'--base_model',
default=None,
type=str,
required=True,
help='Base model path')
parser.add_argument('--lora_model', default=None, type=str,
help="If None, perform inference on the base model")
parser.add_argument(
'--tokenizer_path',
default=None,
type=str,
help='If None, lora model path or base model path will be used')
parser.add_argument(
'--gpus',
default="0",
type=str,
help='If None, cuda:0 will be used. Inference using multi-cards: --gpus=0,1,... ')
parser.add_argument('--share', default=True, help='Share gradio domain name')
parser.add_argument('--port', default=19324, type=int, help='Port of gradio demo')
parser.add_argument(
'--max_memory',
default=1024,
type=int,
help='Maximum number of input tokens (including system prompt) to keep. If exceeded, earlier history will be discarded.')
parser.add_argument(
'--load_in_8bit',
action='store_true',
default=False,
help='Use 8 bit quantized model')
parser.add_argument(
'--load_in_4bit',
action='store_true',
default=False,
help='Use 4 bit quantized model')
parser.add_argument(
'--only_cpu',
action='store_true',
help='Only use CPU for inference')
parser.add_argument(
'--alpha',
type=str,
default="1.0",
help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument(
"--use_vllm",
action='store_true',
help="Use vLLM as back-end LLM service.")
parser.add_argument(
"--post_host",
type=str,
default="0.0.0.0",
help="Host of vLLM service.")
parser.add_argument(
"--post_port",
type=int,
default=7777,
help="Port of vLLM service.")
args = parser.parse_args()
ENABLE_CFG_SAMPLING = True
try:
from transformers.generation import UnbatchedClassifierFreeGuidanceLogitsProcessor
except ImportError:
ENABLE_CFG_SAMPLING = False
print("Install the latest transformers (commit equal or later than d533465) to enable CFG sampling.")
if args.use_vllm is True:
print("CFG sampling is disabled when using vLLM.")
ENABLE_CFG_SAMPLING = False
if args.only_cpu is True:
args.gpus = ""
if args.load_in_8bit or args.load_in_4bit:
raise ValueError("Quantization is unavailable on CPU.")
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("Only one quantization method can be chosen for inference. Please check your arguments")
import sys
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
from attn_and_long_ctx_patches import apply_attention_patch, apply_ntk_scaling_patch
if not args.only_cpu:
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)
# Set CUDA devices if available
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# Peft library can only import after setting CUDA devices
from peft import PeftModel
# Set up the required components: model and tokenizer
def setup():
global tokenizer, model, device, share, port, max_memory
if args.use_vllm:
# global share, port, max_memory
max_memory = args.max_memory
port = args.port
share = args.share
if args.lora_model is not None:
raise ValueError("vLLM currently does not support LoRA, please merge the LoRA weights to the base model.")
if args.load_in_8bit or args.load_in_4bit:
raise ValueError("vLLM currently does not support quantization, please use fp16 (default) or unuse --use_vllm.")
if args.only_cpu:
raise ValueError("vLLM requires GPUs with compute capability not less than 7.0. If you want to run only on CPU, please unuse --use_vllm.")
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
print("Start launch vllm server.")
cmd = f"python -m vllm.entrypoints.api_server \
--model={args.base_model} \
--tokenizer={args.tokenizer_path} \
--tokenizer-mode=slow \
--tensor-parallel-size={len(args.gpus.split(','))} \
--host {args.post_host} \
--port {args.post_port} \
&"
subprocess.check_call(cmd, shell=True)
else:
max_memory = args.max_memory
port = args.port
share = args.share
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
# if args.lora_model is None:
# args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
tokenizer.pad_token_id = 0
# tokenizer.pad_token = "<>"
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
quantization_config=BitsAndBytesConfig(
load_in_4bit=args.load_in_4bit,
load_in_8bit=args.load_in_8bit,
bnb_4bit_compute_dtype=load_type,
# load_in_8bit_fp32_cpu_offload=True
)
)
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenizer_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenizer_vocab_size}")
if model_vocab_size != tokenizer_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenizer_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(
base_model,
args.lora_model,
torch_dtype=load_type,
device_map='auto',
).half()
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
# Reset the user input
def reset_user_input():
return gr.update(value='')
# Reset the state
def reset_state():
return []
def generate_prompt(instruction, response="", with_system_prompt=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
if with_system_prompt is True:
prompt = TEMPLATE_WITH_SYSTEM_PROMPT.format_map({'instruction': instruction,'system_prompt': system_prompt})
else:
prompt = TEMPLATE_WITHOUT_SYSTEM_PROMPT.format_map({'instruction': instruction})
if len(response)>0:
prompt += " " + response
return prompt
# User interaction function for chat
def user(user_message, history):
return gr.update(value="", interactive=False), history + \
[[user_message, None]]
class Stream(StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
Adapted from: https://stackoverflow.com/a/9969000
"""
def __init__(self, func, kwargs=None, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs or {}
self.stop_now = False
def _callback(val):
if self.stop_now:
raise ValueError
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except Exception:
traceback.print_exc()
clear_torch_cache()
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
clear_torch_cache()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
clear_torch_cache()
def clear_torch_cache():
gc.collect()
if torch.cuda.device_count() > 0:
torch.cuda.empty_cache()
def post_http_request(prompt: str,
api_url: str,
n: int = 1,
top_p: float = 0.9,
top_k: int = 40,
temperature: float = 0.2,
max_tokens: int = 1024,
presence_penalty: float = 1.0,
use_beam_search: bool = False,
stream: bool = False) -> requests.Response:
headers = {"User-Agent": "Test Client"}
pload = {
"prompt": prompt,
"n": n,
"top_p": 1 if use_beam_search else top_p,
"top_k": -1 if use_beam_search else top_k,
"temperature": 0 if use_beam_search else temperature,
"max_tokens": max_tokens,
"use_beam_search": use_beam_search,
"best_of": 5 if use_beam_search else n,
"presence_penalty": presence_penalty,
"stream": stream,
}
print(pload)
response = requests.post(api_url, headers=headers, json=pload, stream=True)
return response
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
for chunk in response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"]
yield output
# Perform prediction based on the user input and history
@torch.no_grad()
def predict(
history,
system_prompt,
negative_prompt,
max_new_tokens=1024,
top_p=0.89,
temperature=0.85,
top_k=40,
do_sample=True,
repetition_penalty=1.2,
guidance_scale=1.0,
presence_penalty=0.0,
):
if len(system_prompt) == 0:
system_prompt = DEFAULT_SYSTEM_PROMPT
while True:
print("len(history):", len(history))
print("history: ", history)
history[-1][1] = ""
if len(history) == 1:
input = history[0][0]
prompt = generate_prompt(input,response="", with_system_prompt=True, system_prompt=system_prompt)
print(f"prompt:{prompt}")
else:
input = history[0][0]
response = history[0][1]
prompt = generate_prompt(input, response=response, with_system_prompt=True, system_prompt=system_prompt)+'</s>'
for hist in history[1:-1]:
input = hist[0]
response = hist[1]
prompt = prompt + '<s>'+generate_prompt(input, response=response, with_system_prompt=False)+'</s>'
input = history[-1][0]
check_text = input.replace("<br>","").replace(" ","").replace("\n","")
if len(check_text) == 0:
input = ""
prompt = prompt + '<s>'+generate_prompt(input, response="", with_system_prompt=False)
print(f"prompt1:{prompt}")
input_length = len(tokenizer.encode(prompt, add_special_tokens=True))
print(f"Input length: {input_length}")
if input_length > max_memory and len(history) > 1:
print(f"The input length ({input_length}) exceeds the max memory ({max_memory}). The earlier history will be discarded.")
history = history[1:]
print("history: ", history)
else:
break
if args.use_vllm:
generate_params = {
'max_tokens': max_new_tokens,
'top_p': top_p,
'temperature': temperature,
'top_k': top_k,
"use_beam_search": not do_sample,
'presence_penalty': presence_penalty,
}
api_url = f"http://{args.post_host}:{args.post_port}/generate"
response = post_http_request(prompt, api_url, **generate_params, stream=True)
for h in get_streaming_response(response):
for line in h:
line = line.replace(prompt, '')
history[-1][1] = line
yield history
else:
negative_text = None
if len(negative_prompt) != 0:
negative_text = re.sub(r"<<SYS>>\n(.*)\n<</SYS>>", f"<<SYS>>\n{negative_prompt}\n<</SYS>>", prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if negative_text is None:
negative_prompt_ids = None
negative_prompt_attention_mask = None
else:
negative_inputs = tokenizer(negative_text,return_tensors="pt")
negative_prompt_ids = negative_inputs["input_ids"].to(device)
negative_prompt_attention_mask = negative_inputs["attention_mask"].to(device)
generate_params = {
'input_ids': input_ids,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'temperature': temperature,
'top_k': top_k,
'do_sample': do_sample,
'repetition_penalty': repetition_penalty,
}
if ENABLE_CFG_SAMPLING is True:
generate_params['guidance_scale'] = guidance_scale
generate_params['negative_prompt_ids'] = negative_prompt_ids
generate_params['negative_prompt_attention_mask'] = negative_prompt_attention_mask
def generate_with_callback(callback=None, **kwargs):
if 'stopping_criteria' in kwargs:
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
else:
kwargs['stopping_criteria'] = [Stream(callback_func=callback)]
clear_torch_cache()
with torch.no_grad():
model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
next_token_ids = output[len(input_ids[0]):]
if next_token_ids[0] in [tokenizer.eos_token_id,0]:
break
new_tokens = tokenizer.decode(
next_token_ids, skip_special_tokens=True)
if isinstance(tokenizer, LlamaTokenizer) and len(next_token_ids) > 0:
if tokenizer.convert_ids_to_tokens(int(next_token_ids[0])).startswith('▁'):
new_tokens = ' ' + new_tokens
history[-1][1] = new_tokens
yield history
if len(next_token_ids) >= max_new_tokens:
break
# Call the setup function to initialize the components
setup()
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}") as demo:
github_banner_path = 'https://raw.githubusercontent.com/moseshu/llama2-chat/main/llama2.jpg'
gr.HTML(f'<p align="center"><a href="https://huggingface.co/Moses25/Llama2-Moses-7b-chat"><img src={github_banner_path} width="100" height="40"/>Llama2-Moses-7b</a></p>')
chatbot = gr.Chatbot().style(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=3):
system_prompt_input = gr.Textbox(
show_label=True,
label="system prompt(仅在对话开始前或清空历史后修改有效,对话过程中修改无效)",
placeholder=DEFAULT_SYSTEM_PROMPT,
lines=1).style(
container=True)
negative_prompt_input = gr.Textbox(
show_label=True,
label="反向提示语(仅在对话开始前或清空历史后修改有效,对话过程中修改无效)",
placeholder="option",
lines=1,
visible=ENABLE_CFG_SAMPLING).style(
container=True)
with gr.Column(scale=10):
user_input = gr.Textbox(
show_label=True,
label="ChatBox",
placeholder="Shift + Enter发送消息...",
lines=10).style(
container=True)
with gr.Column(min_width=24, scale=1):
with gr.Row():
stop = gr.Button("Stop",variant='stop')
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_new_token = gr.Slider(
0,
4096,
value=1024,
step=1.0,
label="Maximum New Token Length",
interactive=True)
top_p = gr.Slider(0, 1, value=0.9, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0,
1,
value=0.7,
step=0.01,
label="Temperature",
interactive=True)
top_k = gr.Slider(1, 40, value=40, step=1,
label="Top K", interactive=True)
do_sample = gr.Checkbox(
value=True,
label="Do Sample",
info="use random sample strategy",
interactive=True)
repetition_penalty = gr.Slider(
1.0,
3.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
interactive=True,
visible=False if args.use_vllm else True)
guidance_scale = gr.Slider(
1.0,
3.0,
value=1.0,
step=0.1,
label="Guidance Scale",
interactive=True,
visible=ENABLE_CFG_SAMPLING)
presence_penalty = gr.Slider(
-2.0,
2.0,
value=1.0,
step=0.1,
label="Presence Penalty",
interactive=True,
visible=True if args.use_vllm else False)
params = [user_input, chatbot]
predict_params = [
chatbot,
system_prompt_input,
negative_prompt_input,
max_new_token,
top_p,
temperature,
top_k,
do_sample,
repetition_penalty,
guidance_scale,
presence_penalty]
with gr.Row():
gr.Markdown(
"免责声明:该模型可能会产生与事实不符的输出,不应依赖该模型来产生与事实相符的信息。模型在各种公共数据集以及得物一些商品信息进行训练。尽管做了大量的数据清洗,但是模型的输出结果还可能存在一些问题",
elem_classes=["disclaimer"],
)
submit_click_event = submitBtn.click(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=True)
submit_event = user_input.submit(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=True)
submitBtn.click(reset_user_input, [], [user_input])
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
emptyBtn.click(reset_state, outputs=[chatbot], show_progress=True)
# Launch the Gradio interface
demo.queue().launch(
share=share,
inbrowser=True,
server_name='0.0.0.0',
server_port=port)
|