--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large-zeroshot-v1.1-all_except_nli results: [] --- # deberta-v3-large-zeroshot-v1.1-all_except_nli This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3183 - F1 Macro: 0.2132 - F1 Micro: 0.2379 - Accuracy Balanced: 0.2319 - Accuracy: 0.2379 - Precision Macro: 0.4070 - Recall Macro: 0.2319 - Precision Micro: 0.2379 - Recall Micro: 0.2379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.1929 | 1.0 | 27664 | 0.3072 | 0.8708 | 0.8831 | 0.8683 | 0.8831 | 0.8735 | 0.8683 | 0.8831 | 0.8831 | | 0.1426 | 2.0 | 55328 | 0.3692 | 0.8709 | 0.8839 | 0.8664 | 0.8839 | 0.8761 | 0.8664 | 0.8839 | 0.8839 | | 0.0935 | 3.0 | 82992 | 0.4419 | 0.8747 | 0.8864 | 0.8729 | 0.8864 | 0.8765 | 0.8729 | 0.8864 | 0.8864 | ### Framework versions - Transformers 4.33.3 - Pytorch 1.11.0+cu113 - Datasets 2.14.6 - Tokenizers 0.12.1