--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-base-zeroshot-v1.1-all_except_nli results: [] --- # deberta-v3-base-zeroshot-v1.1-all_except_nli This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2417 - F1 Macro: 0.2126 - F1 Micro: 0.3007 - Accuracy Balanced: 0.2519 - Accuracy: 0.3007 - Precision Macro: 0.4936 - Recall Macro: 0.2519 - Precision Micro: 0.3007 - Recall Micro: 0.3007 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2189 | 1.0 | 27664 | 0.3587 | 0.8454 | 0.8604 | 0.8427 | 0.8604 | 0.8486 | 0.8427 | 0.8604 | 0.8604 | | 0.1704 | 2.0 | 55328 | 0.3941 | 0.8525 | 0.8669 | 0.8493 | 0.8669 | 0.8561 | 0.8493 | 0.8669 | 0.8669 | | 0.1219 | 3.0 | 82992 | 0.4436 | 0.8543 | 0.8679 | 0.8528 | 0.8679 | 0.8559 | 0.8528 | 0.8679 | 0.8679 | ### Framework versions - Transformers 4.33.3 - Pytorch 1.11.0+cu113 - Datasets 2.14.6 - Tokenizers 0.12.1