import os import cv2 import numpy as np import torch import gradio as gr import argparse from pathlib import Path from glob import glob from typing import Optional, Tuple, List from PIL import Image from transformers import AutoModelForImageSegmentation from torchvision import transforms import time import os import platform def parse_args(): parser = argparse.ArgumentParser(description="Run the image segmentation app") parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface") return parser.parse_args() torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f os.environ['HOME'] = os.path.expanduser('~') device = "cuda" if torch.cuda.is_available() else "cpu" def open_folder(): open_folder_path = os.path.abspath("results") if platform.system() == "Windows": os.startfile(open_folder_path) elif platform.system() == "Linux": os.system(f'xdg-open "{open_folder_path}"') class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.ToTensor(), ]) self.normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) def proc(self, image: Image.Image) -> torch.Tensor: image = image.convert('RGB') # Convert to RGB image = self.transform_image(image) return self.normalize(image) usage_to_weights_file = { 'General': 'BiRefNet', 'General-Lite': 'BiRefNet_T', 'Portrait': 'BiRefNet-portrait', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs' } birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) birefnet.to(device) birefnet.eval() def process_single_image(image_path: str, resolution: str, output_folder: str) -> Tuple[str, str, float]: start_time = time.time() image = Image.open(image_path).convert('RGBA') if resolution == '': resolution = f"{image.width}x{image.height}" resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] image_shape = image.size[::-1] image_pil = image.resize(tuple(resolution)) image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) image_proc = image_preprocessor.proc(image_pil) image_proc = image_proc.unsqueeze(0) with torch.no_grad(): scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid() if device == 'cuda': scaled_pred_tensor = scaled_pred_tensor.cpu() pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() pred_rgba = np.zeros((*pred.shape, 4), dtype=np.uint8) pred_rgba[..., :3] = (pred[..., np.newaxis] * 255).astype(np.uint8) pred_rgba[..., 3] = (pred * 255).astype(np.uint8) image_array = np.array(image) image_pred = image_array * (pred_rgba / 255.0) output_image = Image.fromarray(image_pred.astype(np.uint8), 'RGBA') base_filename = os.path.splitext(os.path.basename(image_path))[0] output_path = os.path.join(output_folder, f"{base_filename}.png") counter = 1 while os.path.exists(output_path): output_path = os.path.join(output_folder, f"{base_filename}_{counter:04d}.png") counter += 1 output_image.save(output_path) processing_time = time.time() - start_time print(f"Processed {image_path} in {processing_time:.4f} seconds") # Added this line to print processing time return image_path, output_path, processing_time def predict( image: str, resolution: str, weights_file: Optional[str], batch_folder: Optional[str] = None, output_folder: Optional[str] = None, is_batch: bool = False ) -> Tuple[str, List[Tuple[str, str]]]: global birefnet _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) print('Using weights:', _weights_file) birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) birefnet.to(device) birefnet.eval() if not output_folder: output_folder = 'results' os.makedirs(output_folder, exist_ok=True) results = [] if is_batch and batch_folder: image_files = glob(os.path.join(batch_folder, '*')) total_images = len(image_files) processed_images = 0 start_time = time.time() for img_path in image_files: try: input_path, output_path, proc_time = process_single_image(img_path, resolution, output_folder) results.append((output_path, f"{proc_time:.4f} seconds")) processed_images += 1 elapsed_time = time.time() - start_time avg_time_per_image = elapsed_time / processed_images estimated_time_left = avg_time_per_image * (total_images - processed_images) status = f"Processed {processed_images}/{total_images} images. Estimated time left: {estimated_time_left:.2f} seconds" print(status) except Exception as e: print(f"Error processing {img_path}: {str(e)}") continue return f"Batch processing complete. Processed {processed_images}/{total_images} images.", results else: input_path, output_path, proc_time = process_single_image(image, resolution, output_folder) results.append((output_path, f"{proc_time:.4f} seconds")) return "Single image processing complete.", results def create_interface(): with gr.Blocks() as demo: gr.Markdown("## SECourses Improved BiRefNet V2 'Bilateral Reference for High-Resolution Dichotomous Image Segmentation' APP - SOTA Background Remover") gr.Markdown("## Most Advanced Latest Version On : https://www.patreon.com/posts/109913645") with gr.Row(): input_image = gr.Image(type="filepath", label="Input Image",height=512) output_image = gr.Gallery(label="Output Image", elem_id="gallery",height=512) with gr.Row(): resolution = gr.Textbox(label="Resolution", placeholder="1024x1024 - Optional - Don't enter to use original image resolution - Higher res uses more VRAM but still works perfect with shared VRAM so fast") weights_file = gr.Dropdown(choices=list(usage_to_weights_file.keys()), value="General", label="Weights File") btn_open_outputs = gr.Button("Open Results Folder") btn_open_outputs.click(fn=open_folder) with gr.Row(): batch_folder = gr.Textbox(label="Batch Folder Path") output_folder = gr.Textbox(label="Output Folder Path", value="results") with gr.Row(): submit_button = gr.Button("Single Image Process") batch_button = gr.Button("Batch Process Images in Given Folder") output_text = gr.Textbox(label="Processing Status") submit_button.click( predict, inputs=[input_image, resolution, weights_file, batch_folder, output_folder, gr.Checkbox(value=False, visible=False)], outputs=[output_text, output_image] ) batch_button.click( predict, inputs=[input_image, resolution, weights_file, batch_folder, output_folder, gr.Checkbox(value=True, visible=False)], outputs=[output_text, output_image] ) return demo if __name__ == "__main__": args = parse_args() demo = create_interface() demo.launch(inbrowser=True, share=args.share)