MonsterMMORPG commited on
Commit
08bd837
1 Parent(s): 7a2767c

Upload 2 files

Browse files
Files changed (2) hide show
  1. giga_App.py +140 -0
  2. giga_requirements.txt +7 -0
giga_App.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import numpy as np
4
+ from aura_sr import AuraSR
5
+ import torch
6
+ import os
7
+ import time
8
+ from pathlib import Path
9
+ import argparse
10
+
11
+ # Force CPU usage
12
+ torch.set_default_tensor_type(torch.FloatTensor)
13
+
14
+ # Override torch.load to always use CPU
15
+ original_load = torch.load
16
+ torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
17
+
18
+ # Initialize the AuraSR model
19
+ aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
20
+
21
+ # Restore original torch.load
22
+ torch.load = original_load
23
+
24
+ def process_single_image(input_image_path):
25
+ if input_image_path is None:
26
+ raise gr.Error("Please provide an image to upscale.")
27
+
28
+ # Load the image
29
+ pil_image = Image.open(input_image_path)
30
+
31
+ # Upscale the image using AuraSR
32
+ start_time = time.time()
33
+ upscaled_image = aura_sr.upscale_4x(pil_image)
34
+ processing_time = time.time() - start_time
35
+
36
+ print(f"Processing time: {processing_time:.2f} seconds")
37
+
38
+ # Save the upscaled image
39
+ output_folder = "outputs"
40
+ os.makedirs(output_folder, exist_ok=True)
41
+
42
+ input_filename = os.path.basename(input_image_path)
43
+ output_filename = os.path.splitext(input_filename)[0]
44
+ output_path = os.path.join(output_folder, output_filename + ".png")
45
+
46
+ counter = 1
47
+ while os.path.exists(output_path):
48
+ output_path = os.path.join(output_folder, f"{output_filename}_{counter:04d}.png")
49
+ counter += 1
50
+
51
+ upscaled_image.save(output_path)
52
+
53
+ return [input_image_path, output_path]
54
+
55
+ def process_batch(input_folder, output_folder=None):
56
+ if not input_folder:
57
+ raise gr.Error("Please provide an input folder path.")
58
+
59
+ if not output_folder:
60
+ output_folder = "outputs"
61
+
62
+ os.makedirs(output_folder, exist_ok=True)
63
+
64
+ input_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))]
65
+ total_files = len(input_files)
66
+ processed_files = 0
67
+ results = []
68
+
69
+ for filename in input_files:
70
+ input_path = os.path.join(input_folder, filename)
71
+ pil_image = Image.open(input_path)
72
+
73
+ start_time = time.time()
74
+ upscaled_image = aura_sr.upscale_4x(pil_image)
75
+ processing_time = time.time() - start_time
76
+
77
+ output_filename = os.path.splitext(filename)[0] + ".png"
78
+ output_path = os.path.join(output_folder, output_filename)
79
+
80
+ counter = 1
81
+ while os.path.exists(output_path):
82
+ output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}_{counter:04d}.png")
83
+ counter += 1
84
+
85
+ upscaled_image.save(output_path)
86
+
87
+ processed_files += 1
88
+ print(f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds")
89
+
90
+ results.append(output_path)
91
+
92
+ print(f"Batch processing complete. {processed_files} images processed.")
93
+ return results
94
+
95
+ title = """<h1 align="center">AuraSR Giga Upscaler V1 by SECourses - Upscales to 4x</h1>
96
+ <p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
97
+ <p><center>Works very fast and very VRAM friendly</center></p>
98
+ <h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h1>
99
+ """
100
+
101
+ def create_demo():
102
+ with gr.Blocks() as demo:
103
+ gr.HTML(title)
104
+
105
+ with gr.Tab("Single Image"):
106
+ with gr.Row():
107
+ with gr.Column(scale=1):
108
+ input_image = gr.Image(label="Input Image", type="filepath")
109
+ process_btn = gr.Button(value="Upscale Image", variant="primary")
110
+ with gr.Column(scale=1):
111
+ output_gallery = gr.Gallery(label="Before / After", columns=2)
112
+
113
+ process_btn.click(
114
+ fn=process_single_image,
115
+ inputs=[input_image],
116
+ outputs=output_gallery
117
+ )
118
+
119
+ with gr.Tab("Batch Processing"):
120
+ with gr.Row():
121
+ input_folder = gr.Textbox(label="Input Folder Path")
122
+ output_folder = gr.Textbox(label="Output Folder Path (Optional)")
123
+ batch_process_btn = gr.Button(value="Process Batch", variant="primary")
124
+ output_gallery = gr.Gallery(label="Processed Images")
125
+
126
+ batch_process_btn.click(
127
+ fn=process_batch,
128
+ inputs=[input_folder, output_folder],
129
+ outputs=output_gallery
130
+ )
131
+
132
+ return demo
133
+
134
+ if __name__ == "__main__":
135
+ parser = argparse.ArgumentParser(description="AuraSR Image Upscaling")
136
+ parser.add_argument("--share", action="store_true", help="Create a publicly shareable link")
137
+ args = parser.parse_args()
138
+
139
+ demo = create_demo()
140
+ demo.launch(debug=True, inbrowser=True, share=args.share)
giga_requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu118
2
+ aura-sr
3
+ gradio-imageslider
4
+ gradio
5
+ torch==2.2.0
6
+ torchvision==0.17.0
7
+ numpy==1.26.4