File size: 7,812 Bytes
604e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb1de4c
604e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb1de4c
 
604e3cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import cv2
import numpy as np
import torch
import gradio as gr
import argparse
from pathlib import Path
from glob import glob
from typing import Optional, Tuple, List
from PIL import Image
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
import time
import os
import platform

def parse_args():
    parser = argparse.ArgumentParser(description="Run the image segmentation app")
    parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
    return parser.parse_args()

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

os.environ['HOME'] = os.path.expanduser('~')

device = "cuda" if torch.cuda.is_available() else "cpu"

def open_folder():
    open_folder_path = os.path.abspath("results")
    if platform.system() == "Windows":
        os.startfile(open_folder_path)
    elif platform.system() == "Linux":
        os.system(f'xdg-open "{open_folder_path}"')

class ImagePreprocessor():
    def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.ToTensor(),
        ])
        self.normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = image.convert('RGB')  # Convert to RGB
        image = self.transform_image(image)
        return self.normalize(image)

usage_to_weights_file = {
    'General': 'BiRefNet',
    'General-Lite': 'BiRefNet_T',
    'Portrait': 'BiRefNet-portrait',
    'DIS': 'BiRefNet-DIS5K',
    'HRSOD': 'BiRefNet-HRSOD',
    'COD': 'BiRefNet-COD',
    'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs'
}

birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()

def process_single_image(image_path: str, resolution: str, output_folder: str) -> Tuple[str, str, float]:
    start_time = time.time()
    
    image = Image.open(image_path).convert('RGBA')
    
    if resolution == '':
        resolution = f"{image.width}x{image.height}"
    resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
    
    image_shape = image.size[::-1]
    image_pil = image.resize(tuple(resolution))

    image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
    image_proc = image_preprocessor.proc(image_pil)
    image_proc = image_proc.unsqueeze(0)

    with torch.no_grad():
        scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid()

    if device == 'cuda':
        scaled_pred_tensor = scaled_pred_tensor.cpu()
    
    pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()

    pred_rgba = np.zeros((*pred.shape, 4), dtype=np.uint8)
    pred_rgba[..., :3] = (pred[..., np.newaxis] * 255).astype(np.uint8)
    pred_rgba[..., 3] = (pred * 255).astype(np.uint8)

    image_array = np.array(image)
    image_pred = image_array * (pred_rgba / 255.0)
    
    output_image = Image.fromarray(image_pred.astype(np.uint8), 'RGBA')
    
    base_filename = os.path.splitext(os.path.basename(image_path))[0]
    output_path = os.path.join(output_folder, f"{base_filename}.png")
    
    counter = 1
    while os.path.exists(output_path):
        output_path = os.path.join(output_folder, f"{base_filename}_{counter:04d}.png")
        counter += 1

    output_image.save(output_path)
    
    processing_time = time.time() - start_time
    print(f"Processed {image_path} in {processing_time:.4f} seconds")  # Added this line to print processing time
    return image_path, output_path, processing_time

def predict(
    image: str,
    resolution: str,
    weights_file: Optional[str],
    batch_folder: Optional[str] = None,
    output_folder: Optional[str] = None,
    is_batch: bool = False
) -> Tuple[str, List[Tuple[str, str]]]:
    global birefnet
    _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
    print('Using weights:', _weights_file)
    birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
    birefnet.to(device)
    birefnet.eval()

    if not output_folder:
        output_folder = 'results'
    os.makedirs(output_folder, exist_ok=True)

    results = []

    if is_batch and batch_folder:
        image_files = glob(os.path.join(batch_folder, '*'))
        total_images = len(image_files)
        processed_images = 0
        start_time = time.time()

        for img_path in image_files:
            try:
                input_path, output_path, proc_time = process_single_image(img_path, resolution, output_folder)
                results.append((output_path, f"{proc_time:.4f} seconds"))
                processed_images += 1
                elapsed_time = time.time() - start_time
                avg_time_per_image = elapsed_time / processed_images
                estimated_time_left = avg_time_per_image * (total_images - processed_images)

                status = f"Processed {processed_images}/{total_images} images. Estimated time left: {estimated_time_left:.2f} seconds"
                print(status)
            except Exception as e:
                print(f"Error processing {img_path}: {str(e)}")
                continue

        return f"Batch processing complete. Processed {processed_images}/{total_images} images.", results
    else:
        input_path, output_path, proc_time = process_single_image(image, resolution, output_folder)
        results.append((output_path, f"{proc_time:.4f} seconds"))
        return "Single image processing complete.", results

def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("## SECourses Improved BiRefNet V2 'Bilateral Reference for High-Resolution Dichotomous Image Segmentation' APP - SOTA Background Remover")
        gr.Markdown("## Most Advanced Latest Version On : https://www.patreon.com/posts/109913645")
        
        with gr.Row():
            input_image = gr.Image(type="filepath", label="Input Image",height=512)
            output_image = gr.Gallery(label="Output Image", elem_id="gallery",height=512)


        with gr.Row():
            resolution = gr.Textbox(label="Resolution", placeholder="1024x1024 - Optional - Don't enter to use original image resolution - Higher res uses more VRAM but still works perfect with shared VRAM so fast")
            weights_file = gr.Dropdown(choices=list(usage_to_weights_file.keys()), value="General", label="Weights File")
            btn_open_outputs = gr.Button("Open Results Folder")
            btn_open_outputs.click(fn=open_folder)

        with gr.Row():
            batch_folder = gr.Textbox(label="Batch Folder Path")
            output_folder = gr.Textbox(label="Output Folder Path", value="results")

        with gr.Row():
            submit_button = gr.Button("Single Image Process")
            batch_button = gr.Button("Batch Process Images in Given Folder")

        output_text = gr.Textbox(label="Processing Status")

        submit_button.click(
            predict,
            inputs=[input_image, resolution, weights_file, batch_folder, output_folder, gr.Checkbox(value=False, visible=False)],
            outputs=[output_text, output_image]
        )

        batch_button.click(
            predict,
            inputs=[input_image, resolution, weights_file, batch_folder, output_folder, gr.Checkbox(value=True, visible=False)],
            outputs=[output_text, output_image]
        )

    return demo

if __name__ == "__main__":
    args = parse_args()
    demo = create_interface()
    demo.launch(inbrowser=True, share=args.share)