Upload folder using huggingface_hub
Browse files- .gitattributes +5 -0
- BiRefNet_config.py +11 -0
- birefnet.py +2244 -0
- collage5.png +3 -0
- config.json +20 -0
- diagram1.png +0 -0
- model.safetensors +3 -0
- onnx/model.onnx +3 -0
- onnx/model_bnb4.onnx +3 -0
- onnx/model_fp16.onnx +3 -0
- onnx/model_int8.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
- preprocessor_config.json +23 -0
- pytorch_model.bin +3 -0
- t4.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model_not_working.not_safetensors filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
t4.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
collage.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
collage3.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
collage5.png filter=lfs diff=lfs merge=lfs -text
|
BiRefNet_config.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
class BiRefNetConfig(PretrainedConfig):
|
| 4 |
+
model_type = "SegformerForSemanticSegmentation"
|
| 5 |
+
def __init__(
|
| 6 |
+
self,
|
| 7 |
+
bb_pretrained=False,
|
| 8 |
+
**kwargs
|
| 9 |
+
):
|
| 10 |
+
self.bb_pretrained = bb_pretrained
|
| 11 |
+
super().__init__(**kwargs)
|
birefnet.py
ADDED
|
@@ -0,0 +1,2244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### config.py
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import math
|
| 5 |
+
from transformers import PretrainedConfig
|
| 6 |
+
|
| 7 |
+
class Config(PretrainedConfig):
|
| 8 |
+
def __init__(self) -> None:
|
| 9 |
+
# PATH settings
|
| 10 |
+
self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
|
| 11 |
+
|
| 12 |
+
# TASK settings
|
| 13 |
+
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
| 14 |
+
self.training_set = {
|
| 15 |
+
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
|
| 16 |
+
'COD': 'TR-COD10K+TR-CAMO',
|
| 17 |
+
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
|
| 18 |
+
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
|
| 19 |
+
'P3M-10k': 'TR-P3M-10k',
|
| 20 |
+
}[self.task]
|
| 21 |
+
self.prompt4loc = ['dense', 'sparse'][0]
|
| 22 |
+
|
| 23 |
+
# Faster-Training settings
|
| 24 |
+
self.load_all = True
|
| 25 |
+
self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
|
| 26 |
+
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
|
| 27 |
+
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
|
| 28 |
+
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
|
| 29 |
+
self.precisionHigh = True
|
| 30 |
+
|
| 31 |
+
# MODEL settings
|
| 32 |
+
self.ms_supervision = True
|
| 33 |
+
self.out_ref = self.ms_supervision and True
|
| 34 |
+
self.dec_ipt = True
|
| 35 |
+
self.dec_ipt_split = True
|
| 36 |
+
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
|
| 37 |
+
self.mul_scl_ipt = ['', 'add', 'cat'][2]
|
| 38 |
+
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
|
| 39 |
+
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
|
| 40 |
+
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
|
| 41 |
+
|
| 42 |
+
# TRAINING settings
|
| 43 |
+
self.batch_size = 4
|
| 44 |
+
self.IoU_finetune_last_epochs = [
|
| 45 |
+
0,
|
| 46 |
+
{
|
| 47 |
+
'DIS5K': -50,
|
| 48 |
+
'COD': -20,
|
| 49 |
+
'HRSOD': -20,
|
| 50 |
+
'DIS5K+HRSOD+HRS10K': -20,
|
| 51 |
+
'P3M-10k': -20,
|
| 52 |
+
}[self.task]
|
| 53 |
+
][1] # choose 0 to skip
|
| 54 |
+
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
|
| 55 |
+
self.size = 1024
|
| 56 |
+
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
|
| 57 |
+
|
| 58 |
+
# Backbone settings
|
| 59 |
+
self.bb = [
|
| 60 |
+
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
|
| 61 |
+
'swin_v1_t', 'swin_v1_s', # 3, 4
|
| 62 |
+
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
|
| 63 |
+
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
|
| 64 |
+
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
|
| 65 |
+
][6]
|
| 66 |
+
self.lateral_channels_in_collection = {
|
| 67 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
| 68 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
| 69 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
| 70 |
+
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
|
| 71 |
+
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
|
| 72 |
+
}[self.bb]
|
| 73 |
+
if self.mul_scl_ipt == 'cat':
|
| 74 |
+
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
|
| 75 |
+
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
|
| 76 |
+
|
| 77 |
+
# MODEL settings - inactive
|
| 78 |
+
self.lat_blk = ['BasicLatBlk'][0]
|
| 79 |
+
self.dec_channels_inter = ['fixed', 'adap'][0]
|
| 80 |
+
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
|
| 81 |
+
self.progressive_ref = self.refine and True
|
| 82 |
+
self.ender = self.progressive_ref and False
|
| 83 |
+
self.scale = self.progressive_ref and 2
|
| 84 |
+
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
|
| 85 |
+
self.refine_iteration = 1
|
| 86 |
+
self.freeze_bb = False
|
| 87 |
+
self.model = [
|
| 88 |
+
'BiRefNet',
|
| 89 |
+
][0]
|
| 90 |
+
if self.dec_blk == 'HierarAttDecBlk':
|
| 91 |
+
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
|
| 92 |
+
|
| 93 |
+
# TRAINING settings - inactive
|
| 94 |
+
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
|
| 95 |
+
self.optimizer = ['Adam', 'AdamW'][1]
|
| 96 |
+
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
|
| 97 |
+
self.lr_decay_rate = 0.5
|
| 98 |
+
# Loss
|
| 99 |
+
self.lambdas_pix_last = {
|
| 100 |
+
# not 0 means opening this loss
|
| 101 |
+
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
|
| 102 |
+
'bce': 30 * 1, # high performance
|
| 103 |
+
'iou': 0.5 * 1, # 0 / 255
|
| 104 |
+
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
|
| 105 |
+
'mse': 150 * 0, # can smooth the saliency map
|
| 106 |
+
'triplet': 3 * 0,
|
| 107 |
+
'reg': 100 * 0,
|
| 108 |
+
'ssim': 10 * 1, # help contours,
|
| 109 |
+
'cnt': 5 * 0, # help contours
|
| 110 |
+
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
|
| 111 |
+
}
|
| 112 |
+
self.lambdas_cls = {
|
| 113 |
+
'ce': 5.0
|
| 114 |
+
}
|
| 115 |
+
# Adv
|
| 116 |
+
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
|
| 117 |
+
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
| 118 |
+
|
| 119 |
+
# PATH settings - inactive
|
| 120 |
+
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
|
| 121 |
+
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
|
| 122 |
+
self.weights = {
|
| 123 |
+
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
|
| 124 |
+
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
|
| 125 |
+
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
|
| 126 |
+
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
|
| 127 |
+
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
| 128 |
+
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
| 129 |
+
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
|
| 130 |
+
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
# Callbacks - inactive
|
| 134 |
+
self.verbose_eval = True
|
| 135 |
+
self.only_S_MAE = False
|
| 136 |
+
self.use_fp16 = False # Bugs. It may cause nan in training.
|
| 137 |
+
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
|
| 138 |
+
|
| 139 |
+
# others
|
| 140 |
+
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
|
| 141 |
+
|
| 142 |
+
self.batch_size_valid = 1
|
| 143 |
+
self.rand_seed = 7
|
| 144 |
+
# run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
|
| 145 |
+
# with open(run_sh_file[0], 'r') as f:
|
| 146 |
+
# lines = f.readlines()
|
| 147 |
+
# self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
|
| 148 |
+
# self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
|
| 149 |
+
# self.val_step = [0, self.save_step][0]
|
| 150 |
+
|
| 151 |
+
def print_task(self) -> None:
|
| 152 |
+
# Return task for choosing settings in shell scripts.
|
| 153 |
+
print(self.task)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
### models/backbones/pvt_v2.py
|
| 158 |
+
|
| 159 |
+
import torch
|
| 160 |
+
import torch.nn as nn
|
| 161 |
+
from functools import partial
|
| 162 |
+
|
| 163 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
| 164 |
+
from timm.models.registry import register_model
|
| 165 |
+
|
| 166 |
+
import math
|
| 167 |
+
|
| 168 |
+
# from config import Config
|
| 169 |
+
|
| 170 |
+
# config = Config()
|
| 171 |
+
|
| 172 |
+
class Mlp(nn.Module):
|
| 173 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 174 |
+
super().__init__()
|
| 175 |
+
out_features = out_features or in_features
|
| 176 |
+
hidden_features = hidden_features or in_features
|
| 177 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 178 |
+
self.dwconv = DWConv(hidden_features)
|
| 179 |
+
self.act = act_layer()
|
| 180 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 181 |
+
self.drop = nn.Dropout(drop)
|
| 182 |
+
|
| 183 |
+
self.apply(self._init_weights)
|
| 184 |
+
|
| 185 |
+
def _init_weights(self, m):
|
| 186 |
+
if isinstance(m, nn.Linear):
|
| 187 |
+
trunc_normal_(m.weight, std=.02)
|
| 188 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 189 |
+
nn.init.constant_(m.bias, 0)
|
| 190 |
+
elif isinstance(m, nn.LayerNorm):
|
| 191 |
+
nn.init.constant_(m.bias, 0)
|
| 192 |
+
nn.init.constant_(m.weight, 1.0)
|
| 193 |
+
elif isinstance(m, nn.Conv2d):
|
| 194 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 195 |
+
fan_out //= m.groups
|
| 196 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 197 |
+
if m.bias is not None:
|
| 198 |
+
m.bias.data.zero_()
|
| 199 |
+
|
| 200 |
+
def forward(self, x, H, W):
|
| 201 |
+
x = self.fc1(x)
|
| 202 |
+
x = self.dwconv(x, H, W)
|
| 203 |
+
x = self.act(x)
|
| 204 |
+
x = self.drop(x)
|
| 205 |
+
x = self.fc2(x)
|
| 206 |
+
x = self.drop(x)
|
| 207 |
+
return x
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class Attention(nn.Module):
|
| 211 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
| 212 |
+
super().__init__()
|
| 213 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
| 214 |
+
|
| 215 |
+
self.dim = dim
|
| 216 |
+
self.num_heads = num_heads
|
| 217 |
+
head_dim = dim // num_heads
|
| 218 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 219 |
+
|
| 220 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
| 221 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
| 222 |
+
self.attn_drop_prob = attn_drop
|
| 223 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 224 |
+
self.proj = nn.Linear(dim, dim)
|
| 225 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 226 |
+
|
| 227 |
+
self.sr_ratio = sr_ratio
|
| 228 |
+
if sr_ratio > 1:
|
| 229 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
| 230 |
+
self.norm = nn.LayerNorm(dim)
|
| 231 |
+
|
| 232 |
+
self.apply(self._init_weights)
|
| 233 |
+
|
| 234 |
+
def _init_weights(self, m):
|
| 235 |
+
if isinstance(m, nn.Linear):
|
| 236 |
+
trunc_normal_(m.weight, std=.02)
|
| 237 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 238 |
+
nn.init.constant_(m.bias, 0)
|
| 239 |
+
elif isinstance(m, nn.LayerNorm):
|
| 240 |
+
nn.init.constant_(m.bias, 0)
|
| 241 |
+
nn.init.constant_(m.weight, 1.0)
|
| 242 |
+
elif isinstance(m, nn.Conv2d):
|
| 243 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 244 |
+
fan_out //= m.groups
|
| 245 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 246 |
+
if m.bias is not None:
|
| 247 |
+
m.bias.data.zero_()
|
| 248 |
+
|
| 249 |
+
def forward(self, x, H, W):
|
| 250 |
+
B, N, C = x.shape
|
| 251 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
| 252 |
+
|
| 253 |
+
if self.sr_ratio > 1:
|
| 254 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
| 255 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
| 256 |
+
x_ = self.norm(x_)
|
| 257 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 258 |
+
else:
|
| 259 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 260 |
+
k, v = kv[0], kv[1]
|
| 261 |
+
|
| 262 |
+
if config.SDPA_enabled:
|
| 263 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
| 264 |
+
q, k, v,
|
| 265 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
| 266 |
+
).transpose(1, 2).reshape(B, N, C)
|
| 267 |
+
else:
|
| 268 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
| 269 |
+
attn = attn.softmax(dim=-1)
|
| 270 |
+
attn = self.attn_drop(attn)
|
| 271 |
+
|
| 272 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
| 273 |
+
x = self.proj(x)
|
| 274 |
+
x = self.proj_drop(x)
|
| 275 |
+
|
| 276 |
+
return x
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class Block(nn.Module):
|
| 280 |
+
|
| 281 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
| 282 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.norm1 = norm_layer(dim)
|
| 285 |
+
self.attn = Attention(
|
| 286 |
+
dim,
|
| 287 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 288 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
| 289 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
| 290 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 291 |
+
self.norm2 = norm_layer(dim)
|
| 292 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 293 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 294 |
+
|
| 295 |
+
self.apply(self._init_weights)
|
| 296 |
+
|
| 297 |
+
def _init_weights(self, m):
|
| 298 |
+
if isinstance(m, nn.Linear):
|
| 299 |
+
trunc_normal_(m.weight, std=.02)
|
| 300 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 301 |
+
nn.init.constant_(m.bias, 0)
|
| 302 |
+
elif isinstance(m, nn.LayerNorm):
|
| 303 |
+
nn.init.constant_(m.bias, 0)
|
| 304 |
+
nn.init.constant_(m.weight, 1.0)
|
| 305 |
+
elif isinstance(m, nn.Conv2d):
|
| 306 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 307 |
+
fan_out //= m.groups
|
| 308 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 309 |
+
if m.bias is not None:
|
| 310 |
+
m.bias.data.zero_()
|
| 311 |
+
|
| 312 |
+
def forward(self, x, H, W):
|
| 313 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
| 314 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
| 315 |
+
|
| 316 |
+
return x
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class OverlapPatchEmbed(nn.Module):
|
| 320 |
+
""" Image to Patch Embedding
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
| 324 |
+
super().__init__()
|
| 325 |
+
img_size = to_2tuple(img_size)
|
| 326 |
+
patch_size = to_2tuple(patch_size)
|
| 327 |
+
|
| 328 |
+
self.img_size = img_size
|
| 329 |
+
self.patch_size = patch_size
|
| 330 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
| 331 |
+
self.num_patches = self.H * self.W
|
| 332 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
| 333 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
| 334 |
+
self.norm = nn.LayerNorm(embed_dim)
|
| 335 |
+
|
| 336 |
+
self.apply(self._init_weights)
|
| 337 |
+
|
| 338 |
+
def _init_weights(self, m):
|
| 339 |
+
if isinstance(m, nn.Linear):
|
| 340 |
+
trunc_normal_(m.weight, std=.02)
|
| 341 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 342 |
+
nn.init.constant_(m.bias, 0)
|
| 343 |
+
elif isinstance(m, nn.LayerNorm):
|
| 344 |
+
nn.init.constant_(m.bias, 0)
|
| 345 |
+
nn.init.constant_(m.weight, 1.0)
|
| 346 |
+
elif isinstance(m, nn.Conv2d):
|
| 347 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 348 |
+
fan_out //= m.groups
|
| 349 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 350 |
+
if m.bias is not None:
|
| 351 |
+
m.bias.data.zero_()
|
| 352 |
+
|
| 353 |
+
def forward(self, x):
|
| 354 |
+
x = self.proj(x)
|
| 355 |
+
_, _, H, W = x.shape
|
| 356 |
+
x = x.flatten(2).transpose(1, 2)
|
| 357 |
+
x = self.norm(x)
|
| 358 |
+
|
| 359 |
+
return x, H, W
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class PyramidVisionTransformerImpr(nn.Module):
|
| 363 |
+
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
| 364 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
| 365 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
| 366 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
| 367 |
+
super().__init__()
|
| 368 |
+
self.num_classes = num_classes
|
| 369 |
+
self.depths = depths
|
| 370 |
+
|
| 371 |
+
# patch_embed
|
| 372 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
|
| 373 |
+
embed_dim=embed_dims[0])
|
| 374 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
|
| 375 |
+
embed_dim=embed_dims[1])
|
| 376 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
|
| 377 |
+
embed_dim=embed_dims[2])
|
| 378 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
|
| 379 |
+
embed_dim=embed_dims[3])
|
| 380 |
+
|
| 381 |
+
# transformer encoder
|
| 382 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 383 |
+
cur = 0
|
| 384 |
+
self.block1 = nn.ModuleList([Block(
|
| 385 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 386 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 387 |
+
sr_ratio=sr_ratios[0])
|
| 388 |
+
for i in range(depths[0])])
|
| 389 |
+
self.norm1 = norm_layer(embed_dims[0])
|
| 390 |
+
|
| 391 |
+
cur += depths[0]
|
| 392 |
+
self.block2 = nn.ModuleList([Block(
|
| 393 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 394 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 395 |
+
sr_ratio=sr_ratios[1])
|
| 396 |
+
for i in range(depths[1])])
|
| 397 |
+
self.norm2 = norm_layer(embed_dims[1])
|
| 398 |
+
|
| 399 |
+
cur += depths[1]
|
| 400 |
+
self.block3 = nn.ModuleList([Block(
|
| 401 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 402 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 403 |
+
sr_ratio=sr_ratios[2])
|
| 404 |
+
for i in range(depths[2])])
|
| 405 |
+
self.norm3 = norm_layer(embed_dims[2])
|
| 406 |
+
|
| 407 |
+
cur += depths[2]
|
| 408 |
+
self.block4 = nn.ModuleList([Block(
|
| 409 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 410 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
| 411 |
+
sr_ratio=sr_ratios[3])
|
| 412 |
+
for i in range(depths[3])])
|
| 413 |
+
self.norm4 = norm_layer(embed_dims[3])
|
| 414 |
+
|
| 415 |
+
# classification head
|
| 416 |
+
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
| 417 |
+
|
| 418 |
+
self.apply(self._init_weights)
|
| 419 |
+
|
| 420 |
+
def _init_weights(self, m):
|
| 421 |
+
if isinstance(m, nn.Linear):
|
| 422 |
+
trunc_normal_(m.weight, std=.02)
|
| 423 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 424 |
+
nn.init.constant_(m.bias, 0)
|
| 425 |
+
elif isinstance(m, nn.LayerNorm):
|
| 426 |
+
nn.init.constant_(m.bias, 0)
|
| 427 |
+
nn.init.constant_(m.weight, 1.0)
|
| 428 |
+
elif isinstance(m, nn.Conv2d):
|
| 429 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 430 |
+
fan_out //= m.groups
|
| 431 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
| 432 |
+
if m.bias is not None:
|
| 433 |
+
m.bias.data.zero_()
|
| 434 |
+
|
| 435 |
+
def init_weights(self, pretrained=None):
|
| 436 |
+
if isinstance(pretrained, str):
|
| 437 |
+
logger = 1
|
| 438 |
+
#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
|
| 439 |
+
|
| 440 |
+
def reset_drop_path(self, drop_path_rate):
|
| 441 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
| 442 |
+
cur = 0
|
| 443 |
+
for i in range(self.depths[0]):
|
| 444 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
| 445 |
+
|
| 446 |
+
cur += self.depths[0]
|
| 447 |
+
for i in range(self.depths[1]):
|
| 448 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
| 449 |
+
|
| 450 |
+
cur += self.depths[1]
|
| 451 |
+
for i in range(self.depths[2]):
|
| 452 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
| 453 |
+
|
| 454 |
+
cur += self.depths[2]
|
| 455 |
+
for i in range(self.depths[3]):
|
| 456 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
| 457 |
+
|
| 458 |
+
def freeze_patch_emb(self):
|
| 459 |
+
self.patch_embed1.requires_grad = False
|
| 460 |
+
|
| 461 |
+
@torch.jit.ignore
|
| 462 |
+
def no_weight_decay(self):
|
| 463 |
+
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
| 464 |
+
|
| 465 |
+
def get_classifier(self):
|
| 466 |
+
return self.head
|
| 467 |
+
|
| 468 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
| 469 |
+
self.num_classes = num_classes
|
| 470 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 471 |
+
|
| 472 |
+
def forward_features(self, x):
|
| 473 |
+
B = x.shape[0]
|
| 474 |
+
outs = []
|
| 475 |
+
|
| 476 |
+
# stage 1
|
| 477 |
+
x, H, W = self.patch_embed1(x)
|
| 478 |
+
for i, blk in enumerate(self.block1):
|
| 479 |
+
x = blk(x, H, W)
|
| 480 |
+
x = self.norm1(x)
|
| 481 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 482 |
+
outs.append(x)
|
| 483 |
+
|
| 484 |
+
# stage 2
|
| 485 |
+
x, H, W = self.patch_embed2(x)
|
| 486 |
+
for i, blk in enumerate(self.block2):
|
| 487 |
+
x = blk(x, H, W)
|
| 488 |
+
x = self.norm2(x)
|
| 489 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 490 |
+
outs.append(x)
|
| 491 |
+
|
| 492 |
+
# stage 3
|
| 493 |
+
x, H, W = self.patch_embed3(x)
|
| 494 |
+
for i, blk in enumerate(self.block3):
|
| 495 |
+
x = blk(x, H, W)
|
| 496 |
+
x = self.norm3(x)
|
| 497 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 498 |
+
outs.append(x)
|
| 499 |
+
|
| 500 |
+
# stage 4
|
| 501 |
+
x, H, W = self.patch_embed4(x)
|
| 502 |
+
for i, blk in enumerate(self.block4):
|
| 503 |
+
x = blk(x, H, W)
|
| 504 |
+
x = self.norm4(x)
|
| 505 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
| 506 |
+
outs.append(x)
|
| 507 |
+
|
| 508 |
+
return outs
|
| 509 |
+
|
| 510 |
+
# return x.mean(dim=1)
|
| 511 |
+
|
| 512 |
+
def forward(self, x):
|
| 513 |
+
x = self.forward_features(x)
|
| 514 |
+
# x = self.head(x)
|
| 515 |
+
|
| 516 |
+
return x
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
class DWConv(nn.Module):
|
| 520 |
+
def __init__(self, dim=768):
|
| 521 |
+
super(DWConv, self).__init__()
|
| 522 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
| 523 |
+
|
| 524 |
+
def forward(self, x, H, W):
|
| 525 |
+
B, N, C = x.shape
|
| 526 |
+
x = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
| 527 |
+
x = self.dwconv(x)
|
| 528 |
+
x = x.flatten(2).transpose(1, 2)
|
| 529 |
+
|
| 530 |
+
return x
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def _conv_filter(state_dict, patch_size=16):
|
| 534 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
| 535 |
+
out_dict = {}
|
| 536 |
+
for k, v in state_dict.items():
|
| 537 |
+
if 'patch_embed.proj.weight' in k:
|
| 538 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
| 539 |
+
out_dict[k] = v
|
| 540 |
+
|
| 541 |
+
return out_dict
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
## @register_model
|
| 545 |
+
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
| 546 |
+
def __init__(self, **kwargs):
|
| 547 |
+
super(pvt_v2_b0, self).__init__(
|
| 548 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 549 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 550 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
## @register_model
|
| 555 |
+
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
| 556 |
+
def __init__(self, **kwargs):
|
| 557 |
+
super(pvt_v2_b1, self).__init__(
|
| 558 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 559 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
| 560 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 561 |
+
|
| 562 |
+
## @register_model
|
| 563 |
+
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
| 564 |
+
def __init__(self, in_channels=3, **kwargs):
|
| 565 |
+
super(pvt_v2_b2, self).__init__(
|
| 566 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 567 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
| 568 |
+
drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
|
| 569 |
+
|
| 570 |
+
## @register_model
|
| 571 |
+
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
| 572 |
+
def __init__(self, **kwargs):
|
| 573 |
+
super(pvt_v2_b3, self).__init__(
|
| 574 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 575 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
| 576 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 577 |
+
|
| 578 |
+
## @register_model
|
| 579 |
+
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
| 580 |
+
def __init__(self, **kwargs):
|
| 581 |
+
super(pvt_v2_b4, self).__init__(
|
| 582 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
| 583 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
| 584 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
## @register_model
|
| 588 |
+
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
| 589 |
+
def __init__(self, **kwargs):
|
| 590 |
+
super(pvt_v2_b5, self).__init__(
|
| 591 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
| 592 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
| 593 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
### models/backbones/swin_v1.py
|
| 598 |
+
|
| 599 |
+
# --------------------------------------------------------
|
| 600 |
+
# Swin Transformer
|
| 601 |
+
# Copyright (c) 2021 Microsoft
|
| 602 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 603 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
| 604 |
+
# --------------------------------------------------------
|
| 605 |
+
|
| 606 |
+
import torch
|
| 607 |
+
import torch.nn as nn
|
| 608 |
+
import torch.nn.functional as F
|
| 609 |
+
import torch.utils.checkpoint as checkpoint
|
| 610 |
+
import numpy as np
|
| 611 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
| 612 |
+
|
| 613 |
+
# from config import Config
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
# config = Config()
|
| 617 |
+
|
| 618 |
+
class Mlp(nn.Module):
|
| 619 |
+
""" Multilayer perceptron."""
|
| 620 |
+
|
| 621 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 622 |
+
super().__init__()
|
| 623 |
+
out_features = out_features or in_features
|
| 624 |
+
hidden_features = hidden_features or in_features
|
| 625 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 626 |
+
self.act = act_layer()
|
| 627 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 628 |
+
self.drop = nn.Dropout(drop)
|
| 629 |
+
|
| 630 |
+
def forward(self, x):
|
| 631 |
+
x = self.fc1(x)
|
| 632 |
+
x = self.act(x)
|
| 633 |
+
x = self.drop(x)
|
| 634 |
+
x = self.fc2(x)
|
| 635 |
+
x = self.drop(x)
|
| 636 |
+
return x
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
def window_partition(x, window_size):
|
| 640 |
+
"""
|
| 641 |
+
Args:
|
| 642 |
+
x: (B, H, W, C)
|
| 643 |
+
window_size (int): window size
|
| 644 |
+
|
| 645 |
+
Returns:
|
| 646 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 647 |
+
"""
|
| 648 |
+
B, H, W, C = x.shape
|
| 649 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 650 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 651 |
+
return windows
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
def window_reverse(windows, window_size, H, W):
|
| 655 |
+
"""
|
| 656 |
+
Args:
|
| 657 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 658 |
+
window_size (int): Window size
|
| 659 |
+
H (int): Height of image
|
| 660 |
+
W (int): Width of image
|
| 661 |
+
|
| 662 |
+
Returns:
|
| 663 |
+
x: (B, H, W, C)
|
| 664 |
+
"""
|
| 665 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 666 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 667 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 668 |
+
return x
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
class WindowAttention(nn.Module):
|
| 672 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
| 673 |
+
It supports both of shifted and non-shifted window.
|
| 674 |
+
|
| 675 |
+
Args:
|
| 676 |
+
dim (int): Number of input channels.
|
| 677 |
+
window_size (tuple[int]): The height and width of the window.
|
| 678 |
+
num_heads (int): Number of attention heads.
|
| 679 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 680 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
| 681 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
| 682 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
| 683 |
+
"""
|
| 684 |
+
|
| 685 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 686 |
+
|
| 687 |
+
super().__init__()
|
| 688 |
+
self.dim = dim
|
| 689 |
+
self.window_size = window_size # Wh, Ww
|
| 690 |
+
self.num_heads = num_heads
|
| 691 |
+
head_dim = dim // num_heads
|
| 692 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 693 |
+
|
| 694 |
+
# define a parameter table of relative position bias
|
| 695 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 696 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
| 697 |
+
|
| 698 |
+
# get pair-wise relative position index for each token inside the window
|
| 699 |
+
coords_h = torch.arange(self.window_size[0])
|
| 700 |
+
coords_w = torch.arange(self.window_size[1])
|
| 701 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
|
| 702 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 703 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 704 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 705 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 706 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 707 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 708 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 709 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 710 |
+
|
| 711 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 712 |
+
self.attn_drop_prob = attn_drop
|
| 713 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 714 |
+
self.proj = nn.Linear(dim, dim)
|
| 715 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 716 |
+
|
| 717 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 718 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 719 |
+
|
| 720 |
+
def forward(self, x, mask=None):
|
| 721 |
+
""" Forward function.
|
| 722 |
+
|
| 723 |
+
Args:
|
| 724 |
+
x: input features with shape of (num_windows*B, N, C)
|
| 725 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
| 726 |
+
"""
|
| 727 |
+
B_, N, C = x.shape
|
| 728 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 729 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 730 |
+
|
| 731 |
+
q = q * self.scale
|
| 732 |
+
|
| 733 |
+
if config.SDPA_enabled:
|
| 734 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
| 735 |
+
q, k, v,
|
| 736 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
| 737 |
+
).transpose(1, 2).reshape(B_, N, C)
|
| 738 |
+
else:
|
| 739 |
+
attn = (q @ k.transpose(-2, -1))
|
| 740 |
+
|
| 741 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 742 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
| 743 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 744 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 745 |
+
|
| 746 |
+
if mask is not None:
|
| 747 |
+
nW = mask.shape[0]
|
| 748 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 749 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 750 |
+
attn = self.softmax(attn)
|
| 751 |
+
else:
|
| 752 |
+
attn = self.softmax(attn)
|
| 753 |
+
|
| 754 |
+
attn = self.attn_drop(attn)
|
| 755 |
+
|
| 756 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 757 |
+
x = self.proj(x)
|
| 758 |
+
x = self.proj_drop(x)
|
| 759 |
+
return x
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
class SwinTransformerBlock(nn.Module):
|
| 763 |
+
""" Swin Transformer Block.
|
| 764 |
+
|
| 765 |
+
Args:
|
| 766 |
+
dim (int): Number of input channels.
|
| 767 |
+
num_heads (int): Number of attention heads.
|
| 768 |
+
window_size (int): Window size.
|
| 769 |
+
shift_size (int): Shift size for SW-MSA.
|
| 770 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 771 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 772 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 773 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 774 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 775 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
| 776 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
| 777 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 778 |
+
"""
|
| 779 |
+
|
| 780 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
| 781 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 782 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
| 783 |
+
super().__init__()
|
| 784 |
+
self.dim = dim
|
| 785 |
+
self.num_heads = num_heads
|
| 786 |
+
self.window_size = window_size
|
| 787 |
+
self.shift_size = shift_size
|
| 788 |
+
self.mlp_ratio = mlp_ratio
|
| 789 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
| 790 |
+
|
| 791 |
+
self.norm1 = norm_layer(dim)
|
| 792 |
+
self.attn = WindowAttention(
|
| 793 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
| 794 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 795 |
+
|
| 796 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 797 |
+
self.norm2 = norm_layer(dim)
|
| 798 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 799 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 800 |
+
|
| 801 |
+
self.H = None
|
| 802 |
+
self.W = None
|
| 803 |
+
|
| 804 |
+
def forward(self, x, mask_matrix):
|
| 805 |
+
""" Forward function.
|
| 806 |
+
|
| 807 |
+
Args:
|
| 808 |
+
x: Input feature, tensor size (B, H*W, C).
|
| 809 |
+
H, W: Spatial resolution of the input feature.
|
| 810 |
+
mask_matrix: Attention mask for cyclic shift.
|
| 811 |
+
"""
|
| 812 |
+
B, L, C = x.shape
|
| 813 |
+
H, W = self.H, self.W
|
| 814 |
+
assert L == H * W, "input feature has wrong size"
|
| 815 |
+
|
| 816 |
+
shortcut = x
|
| 817 |
+
x = self.norm1(x)
|
| 818 |
+
x = x.view(B, H, W, C)
|
| 819 |
+
|
| 820 |
+
# pad feature maps to multiples of window size
|
| 821 |
+
pad_l = pad_t = 0
|
| 822 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
| 823 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
| 824 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
| 825 |
+
_, Hp, Wp, _ = x.shape
|
| 826 |
+
|
| 827 |
+
# cyclic shift
|
| 828 |
+
if self.shift_size > 0:
|
| 829 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 830 |
+
attn_mask = mask_matrix
|
| 831 |
+
else:
|
| 832 |
+
shifted_x = x
|
| 833 |
+
attn_mask = None
|
| 834 |
+
|
| 835 |
+
# partition windows
|
| 836 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
| 837 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
| 838 |
+
|
| 839 |
+
# W-MSA/SW-MSA
|
| 840 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
| 841 |
+
|
| 842 |
+
# merge windows
|
| 843 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
| 844 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
| 845 |
+
|
| 846 |
+
# reverse cyclic shift
|
| 847 |
+
if self.shift_size > 0:
|
| 848 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 849 |
+
else:
|
| 850 |
+
x = shifted_x
|
| 851 |
+
|
| 852 |
+
if pad_r > 0 or pad_b > 0:
|
| 853 |
+
x = x[:, :H, :W, :].contiguous()
|
| 854 |
+
|
| 855 |
+
x = x.view(B, H * W, C)
|
| 856 |
+
|
| 857 |
+
# FFN
|
| 858 |
+
x = shortcut + self.drop_path(x)
|
| 859 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 860 |
+
|
| 861 |
+
return x
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
class PatchMerging(nn.Module):
|
| 865 |
+
""" Patch Merging Layer
|
| 866 |
+
|
| 867 |
+
Args:
|
| 868 |
+
dim (int): Number of input channels.
|
| 869 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 870 |
+
"""
|
| 871 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
| 872 |
+
super().__init__()
|
| 873 |
+
self.dim = dim
|
| 874 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
| 875 |
+
self.norm = norm_layer(4 * dim)
|
| 876 |
+
|
| 877 |
+
def forward(self, x, H, W):
|
| 878 |
+
""" Forward function.
|
| 879 |
+
|
| 880 |
+
Args:
|
| 881 |
+
x: Input feature, tensor size (B, H*W, C).
|
| 882 |
+
H, W: Spatial resolution of the input feature.
|
| 883 |
+
"""
|
| 884 |
+
B, L, C = x.shape
|
| 885 |
+
assert L == H * W, "input feature has wrong size"
|
| 886 |
+
|
| 887 |
+
x = x.view(B, H, W, C)
|
| 888 |
+
|
| 889 |
+
# padding
|
| 890 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
| 891 |
+
if pad_input:
|
| 892 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
| 893 |
+
|
| 894 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
| 895 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
| 896 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
| 897 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
| 898 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
| 899 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
| 900 |
+
|
| 901 |
+
x = self.norm(x)
|
| 902 |
+
x = self.reduction(x)
|
| 903 |
+
|
| 904 |
+
return x
|
| 905 |
+
|
| 906 |
+
|
| 907 |
+
class BasicLayer(nn.Module):
|
| 908 |
+
""" A basic Swin Transformer layer for one stage.
|
| 909 |
+
|
| 910 |
+
Args:
|
| 911 |
+
dim (int): Number of feature channels
|
| 912 |
+
depth (int): Depths of this stage.
|
| 913 |
+
num_heads (int): Number of attention head.
|
| 914 |
+
window_size (int): Local window size. Default: 7.
|
| 915 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 916 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 917 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 918 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 919 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 920 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 921 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 922 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 923 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 924 |
+
"""
|
| 925 |
+
|
| 926 |
+
def __init__(self,
|
| 927 |
+
dim,
|
| 928 |
+
depth,
|
| 929 |
+
num_heads,
|
| 930 |
+
window_size=7,
|
| 931 |
+
mlp_ratio=4.,
|
| 932 |
+
qkv_bias=True,
|
| 933 |
+
qk_scale=None,
|
| 934 |
+
drop=0.,
|
| 935 |
+
attn_drop=0.,
|
| 936 |
+
drop_path=0.,
|
| 937 |
+
norm_layer=nn.LayerNorm,
|
| 938 |
+
downsample=None,
|
| 939 |
+
use_checkpoint=False):
|
| 940 |
+
super().__init__()
|
| 941 |
+
self.window_size = window_size
|
| 942 |
+
self.shift_size = window_size // 2
|
| 943 |
+
self.depth = depth
|
| 944 |
+
self.use_checkpoint = use_checkpoint
|
| 945 |
+
|
| 946 |
+
# build blocks
|
| 947 |
+
self.blocks = nn.ModuleList([
|
| 948 |
+
SwinTransformerBlock(
|
| 949 |
+
dim=dim,
|
| 950 |
+
num_heads=num_heads,
|
| 951 |
+
window_size=window_size,
|
| 952 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 953 |
+
mlp_ratio=mlp_ratio,
|
| 954 |
+
qkv_bias=qkv_bias,
|
| 955 |
+
qk_scale=qk_scale,
|
| 956 |
+
drop=drop,
|
| 957 |
+
attn_drop=attn_drop,
|
| 958 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 959 |
+
norm_layer=norm_layer)
|
| 960 |
+
for i in range(depth)])
|
| 961 |
+
|
| 962 |
+
# patch merging layer
|
| 963 |
+
if downsample is not None:
|
| 964 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
| 965 |
+
else:
|
| 966 |
+
self.downsample = None
|
| 967 |
+
|
| 968 |
+
def forward(self, x, H, W):
|
| 969 |
+
""" Forward function.
|
| 970 |
+
|
| 971 |
+
Args:
|
| 972 |
+
x: Input feature, tensor size (B, H*W, C).
|
| 973 |
+
H, W: Spatial resolution of the input feature.
|
| 974 |
+
"""
|
| 975 |
+
|
| 976 |
+
# calculate attention mask for SW-MSA
|
| 977 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
| 978 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
| 979 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
| 980 |
+
h_slices = (slice(0, -self.window_size),
|
| 981 |
+
slice(-self.window_size, -self.shift_size),
|
| 982 |
+
slice(-self.shift_size, None))
|
| 983 |
+
w_slices = (slice(0, -self.window_size),
|
| 984 |
+
slice(-self.window_size, -self.shift_size),
|
| 985 |
+
slice(-self.shift_size, None))
|
| 986 |
+
cnt = 0
|
| 987 |
+
for h in h_slices:
|
| 988 |
+
for w in w_slices:
|
| 989 |
+
img_mask[:, h, w, :] = cnt
|
| 990 |
+
cnt += 1
|
| 991 |
+
|
| 992 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
| 993 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 994 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 995 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 996 |
+
|
| 997 |
+
for blk in self.blocks:
|
| 998 |
+
blk.H, blk.W = H, W
|
| 999 |
+
if self.use_checkpoint:
|
| 1000 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
| 1001 |
+
else:
|
| 1002 |
+
x = blk(x, attn_mask)
|
| 1003 |
+
if self.downsample is not None:
|
| 1004 |
+
x_down = self.downsample(x, H, W)
|
| 1005 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
| 1006 |
+
return x, H, W, x_down, Wh, Ww
|
| 1007 |
+
else:
|
| 1008 |
+
return x, H, W, x, H, W
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
class PatchEmbed(nn.Module):
|
| 1012 |
+
""" Image to Patch Embedding
|
| 1013 |
+
|
| 1014 |
+
Args:
|
| 1015 |
+
patch_size (int): Patch token size. Default: 4.
|
| 1016 |
+
in_channels (int): Number of input image channels. Default: 3.
|
| 1017 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 1018 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
| 1019 |
+
"""
|
| 1020 |
+
|
| 1021 |
+
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
|
| 1022 |
+
super().__init__()
|
| 1023 |
+
patch_size = to_2tuple(patch_size)
|
| 1024 |
+
self.patch_size = patch_size
|
| 1025 |
+
|
| 1026 |
+
self.in_channels = in_channels
|
| 1027 |
+
self.embed_dim = embed_dim
|
| 1028 |
+
|
| 1029 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
| 1030 |
+
if norm_layer is not None:
|
| 1031 |
+
self.norm = norm_layer(embed_dim)
|
| 1032 |
+
else:
|
| 1033 |
+
self.norm = None
|
| 1034 |
+
|
| 1035 |
+
def forward(self, x):
|
| 1036 |
+
"""Forward function."""
|
| 1037 |
+
# padding
|
| 1038 |
+
_, _, H, W = x.size()
|
| 1039 |
+
if W % self.patch_size[1] != 0:
|
| 1040 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
| 1041 |
+
if H % self.patch_size[0] != 0:
|
| 1042 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
| 1043 |
+
|
| 1044 |
+
x = self.proj(x) # B C Wh Ww
|
| 1045 |
+
if self.norm is not None:
|
| 1046 |
+
Wh, Ww = x.size(2), x.size(3)
|
| 1047 |
+
x = x.flatten(2).transpose(1, 2)
|
| 1048 |
+
x = self.norm(x)
|
| 1049 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
| 1050 |
+
|
| 1051 |
+
return x
|
| 1052 |
+
|
| 1053 |
+
|
| 1054 |
+
class SwinTransformer(nn.Module):
|
| 1055 |
+
""" Swin Transformer backbone.
|
| 1056 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
| 1057 |
+
https://arxiv.org/pdf/2103.14030
|
| 1058 |
+
|
| 1059 |
+
Args:
|
| 1060 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
| 1061 |
+
used in absolute postion embedding. Default 224.
|
| 1062 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
| 1063 |
+
in_channels (int): Number of input image channels. Default: 3.
|
| 1064 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
| 1065 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
| 1066 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
| 1067 |
+
window_size (int): Window size. Default: 7.
|
| 1068 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
| 1069 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 1070 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
| 1071 |
+
drop_rate (float): Dropout rate.
|
| 1072 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
| 1073 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
| 1074 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 1075 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
| 1076 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
| 1077 |
+
out_indices (Sequence[int]): Output from which stages.
|
| 1078 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
| 1079 |
+
-1 means not freezing any parameters.
|
| 1080 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 1081 |
+
"""
|
| 1082 |
+
|
| 1083 |
+
def __init__(self,
|
| 1084 |
+
pretrain_img_size=224,
|
| 1085 |
+
patch_size=4,
|
| 1086 |
+
in_channels=3,
|
| 1087 |
+
embed_dim=96,
|
| 1088 |
+
depths=[2, 2, 6, 2],
|
| 1089 |
+
num_heads=[3, 6, 12, 24],
|
| 1090 |
+
window_size=7,
|
| 1091 |
+
mlp_ratio=4.,
|
| 1092 |
+
qkv_bias=True,
|
| 1093 |
+
qk_scale=None,
|
| 1094 |
+
drop_rate=0.,
|
| 1095 |
+
attn_drop_rate=0.,
|
| 1096 |
+
drop_path_rate=0.2,
|
| 1097 |
+
norm_layer=nn.LayerNorm,
|
| 1098 |
+
ape=False,
|
| 1099 |
+
patch_norm=True,
|
| 1100 |
+
out_indices=(0, 1, 2, 3),
|
| 1101 |
+
frozen_stages=-1,
|
| 1102 |
+
use_checkpoint=False):
|
| 1103 |
+
super().__init__()
|
| 1104 |
+
|
| 1105 |
+
self.pretrain_img_size = pretrain_img_size
|
| 1106 |
+
self.num_layers = len(depths)
|
| 1107 |
+
self.embed_dim = embed_dim
|
| 1108 |
+
self.ape = ape
|
| 1109 |
+
self.patch_norm = patch_norm
|
| 1110 |
+
self.out_indices = out_indices
|
| 1111 |
+
self.frozen_stages = frozen_stages
|
| 1112 |
+
|
| 1113 |
+
# split image into non-overlapping patches
|
| 1114 |
+
self.patch_embed = PatchEmbed(
|
| 1115 |
+
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
|
| 1116 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 1117 |
+
|
| 1118 |
+
# absolute position embedding
|
| 1119 |
+
if self.ape:
|
| 1120 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
| 1121 |
+
patch_size = to_2tuple(patch_size)
|
| 1122 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
| 1123 |
+
|
| 1124 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
| 1125 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 1126 |
+
|
| 1127 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 1128 |
+
|
| 1129 |
+
# stochastic depth
|
| 1130 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
| 1131 |
+
|
| 1132 |
+
# build layers
|
| 1133 |
+
self.layers = nn.ModuleList()
|
| 1134 |
+
for i_layer in range(self.num_layers):
|
| 1135 |
+
layer = BasicLayer(
|
| 1136 |
+
dim=int(embed_dim * 2 ** i_layer),
|
| 1137 |
+
depth=depths[i_layer],
|
| 1138 |
+
num_heads=num_heads[i_layer],
|
| 1139 |
+
window_size=window_size,
|
| 1140 |
+
mlp_ratio=mlp_ratio,
|
| 1141 |
+
qkv_bias=qkv_bias,
|
| 1142 |
+
qk_scale=qk_scale,
|
| 1143 |
+
drop=drop_rate,
|
| 1144 |
+
attn_drop=attn_drop_rate,
|
| 1145 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
| 1146 |
+
norm_layer=norm_layer,
|
| 1147 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
| 1148 |
+
use_checkpoint=use_checkpoint)
|
| 1149 |
+
self.layers.append(layer)
|
| 1150 |
+
|
| 1151 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
| 1152 |
+
self.num_features = num_features
|
| 1153 |
+
|
| 1154 |
+
# add a norm layer for each output
|
| 1155 |
+
for i_layer in out_indices:
|
| 1156 |
+
layer = norm_layer(num_features[i_layer])
|
| 1157 |
+
layer_name = f'norm{i_layer}'
|
| 1158 |
+
self.add_module(layer_name, layer)
|
| 1159 |
+
|
| 1160 |
+
self._freeze_stages()
|
| 1161 |
+
|
| 1162 |
+
def _freeze_stages(self):
|
| 1163 |
+
if self.frozen_stages >= 0:
|
| 1164 |
+
self.patch_embed.eval()
|
| 1165 |
+
for param in self.patch_embed.parameters():
|
| 1166 |
+
param.requires_grad = False
|
| 1167 |
+
|
| 1168 |
+
if self.frozen_stages >= 1 and self.ape:
|
| 1169 |
+
self.absolute_pos_embed.requires_grad = False
|
| 1170 |
+
|
| 1171 |
+
if self.frozen_stages >= 2:
|
| 1172 |
+
self.pos_drop.eval()
|
| 1173 |
+
for i in range(0, self.frozen_stages - 1):
|
| 1174 |
+
m = self.layers[i]
|
| 1175 |
+
m.eval()
|
| 1176 |
+
for param in m.parameters():
|
| 1177 |
+
param.requires_grad = False
|
| 1178 |
+
|
| 1179 |
+
|
| 1180 |
+
def forward(self, x):
|
| 1181 |
+
"""Forward function."""
|
| 1182 |
+
x = self.patch_embed(x)
|
| 1183 |
+
|
| 1184 |
+
Wh, Ww = x.size(2), x.size(3)
|
| 1185 |
+
if self.ape:
|
| 1186 |
+
# interpolate the position embedding to the corresponding size
|
| 1187 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
| 1188 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
| 1189 |
+
|
| 1190 |
+
outs = []#x.contiguous()]
|
| 1191 |
+
x = x.flatten(2).transpose(1, 2)
|
| 1192 |
+
x = self.pos_drop(x)
|
| 1193 |
+
for i in range(self.num_layers):
|
| 1194 |
+
layer = self.layers[i]
|
| 1195 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
| 1196 |
+
|
| 1197 |
+
if i in self.out_indices:
|
| 1198 |
+
norm_layer = getattr(self, f'norm{i}')
|
| 1199 |
+
x_out = norm_layer(x_out)
|
| 1200 |
+
|
| 1201 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
| 1202 |
+
outs.append(out)
|
| 1203 |
+
|
| 1204 |
+
return tuple(outs)
|
| 1205 |
+
|
| 1206 |
+
def train(self, mode=True):
|
| 1207 |
+
"""Convert the model into training mode while keep layers freezed."""
|
| 1208 |
+
super(SwinTransformer, self).train(mode)
|
| 1209 |
+
self._freeze_stages()
|
| 1210 |
+
|
| 1211 |
+
def swin_v1_t():
|
| 1212 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
| 1213 |
+
return model
|
| 1214 |
+
|
| 1215 |
+
def swin_v1_s():
|
| 1216 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
| 1217 |
+
return model
|
| 1218 |
+
|
| 1219 |
+
def swin_v1_b():
|
| 1220 |
+
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
| 1221 |
+
return model
|
| 1222 |
+
|
| 1223 |
+
def swin_v1_l():
|
| 1224 |
+
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
|
| 1225 |
+
return model
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
|
| 1229 |
+
### models/modules/deform_conv.py
|
| 1230 |
+
|
| 1231 |
+
import torch
|
| 1232 |
+
import torch.nn as nn
|
| 1233 |
+
from torchvision.ops import deform_conv2d
|
| 1234 |
+
|
| 1235 |
+
|
| 1236 |
+
class DeformableConv2d(nn.Module):
|
| 1237 |
+
def __init__(self,
|
| 1238 |
+
in_channels,
|
| 1239 |
+
out_channels,
|
| 1240 |
+
kernel_size=3,
|
| 1241 |
+
stride=1,
|
| 1242 |
+
padding=1,
|
| 1243 |
+
bias=False):
|
| 1244 |
+
|
| 1245 |
+
super(DeformableConv2d, self).__init__()
|
| 1246 |
+
|
| 1247 |
+
assert type(kernel_size) == tuple or type(kernel_size) == int
|
| 1248 |
+
|
| 1249 |
+
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
|
| 1250 |
+
self.stride = stride if type(stride) == tuple else (stride, stride)
|
| 1251 |
+
self.padding = padding
|
| 1252 |
+
|
| 1253 |
+
self.offset_conv = nn.Conv2d(in_channels,
|
| 1254 |
+
2 * kernel_size[0] * kernel_size[1],
|
| 1255 |
+
kernel_size=kernel_size,
|
| 1256 |
+
stride=stride,
|
| 1257 |
+
padding=self.padding,
|
| 1258 |
+
bias=True)
|
| 1259 |
+
|
| 1260 |
+
nn.init.constant_(self.offset_conv.weight, 0.)
|
| 1261 |
+
nn.init.constant_(self.offset_conv.bias, 0.)
|
| 1262 |
+
|
| 1263 |
+
self.modulator_conv = nn.Conv2d(in_channels,
|
| 1264 |
+
1 * kernel_size[0] * kernel_size[1],
|
| 1265 |
+
kernel_size=kernel_size,
|
| 1266 |
+
stride=stride,
|
| 1267 |
+
padding=self.padding,
|
| 1268 |
+
bias=True)
|
| 1269 |
+
|
| 1270 |
+
nn.init.constant_(self.modulator_conv.weight, 0.)
|
| 1271 |
+
nn.init.constant_(self.modulator_conv.bias, 0.)
|
| 1272 |
+
|
| 1273 |
+
self.regular_conv = nn.Conv2d(in_channels,
|
| 1274 |
+
out_channels=out_channels,
|
| 1275 |
+
kernel_size=kernel_size,
|
| 1276 |
+
stride=stride,
|
| 1277 |
+
padding=self.padding,
|
| 1278 |
+
bias=bias)
|
| 1279 |
+
|
| 1280 |
+
def forward(self, x):
|
| 1281 |
+
#h, w = x.shape[2:]
|
| 1282 |
+
#max_offset = max(h, w)/4.
|
| 1283 |
+
|
| 1284 |
+
offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
|
| 1285 |
+
modulator = 2. * torch.sigmoid(self.modulator_conv(x))
|
| 1286 |
+
|
| 1287 |
+
x = deform_conv2d(
|
| 1288 |
+
input=x,
|
| 1289 |
+
offset=offset,
|
| 1290 |
+
weight=self.regular_conv.weight,
|
| 1291 |
+
bias=self.regular_conv.bias,
|
| 1292 |
+
padding=self.padding,
|
| 1293 |
+
mask=modulator,
|
| 1294 |
+
stride=self.stride,
|
| 1295 |
+
)
|
| 1296 |
+
return x
|
| 1297 |
+
|
| 1298 |
+
|
| 1299 |
+
|
| 1300 |
+
|
| 1301 |
+
### utils.py
|
| 1302 |
+
|
| 1303 |
+
import torch.nn as nn
|
| 1304 |
+
|
| 1305 |
+
|
| 1306 |
+
def build_act_layer(act_layer):
|
| 1307 |
+
if act_layer == 'ReLU':
|
| 1308 |
+
return nn.ReLU(inplace=True)
|
| 1309 |
+
elif act_layer == 'SiLU':
|
| 1310 |
+
return nn.SiLU(inplace=True)
|
| 1311 |
+
elif act_layer == 'GELU':
|
| 1312 |
+
return nn.GELU()
|
| 1313 |
+
|
| 1314 |
+
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
| 1315 |
+
|
| 1316 |
+
|
| 1317 |
+
def build_norm_layer(dim,
|
| 1318 |
+
norm_layer,
|
| 1319 |
+
in_format='channels_last',
|
| 1320 |
+
out_format='channels_last',
|
| 1321 |
+
eps=1e-6):
|
| 1322 |
+
layers = []
|
| 1323 |
+
if norm_layer == 'BN':
|
| 1324 |
+
if in_format == 'channels_last':
|
| 1325 |
+
layers.append(to_channels_first())
|
| 1326 |
+
layers.append(nn.BatchNorm2d(dim))
|
| 1327 |
+
if out_format == 'channels_last':
|
| 1328 |
+
layers.append(to_channels_last())
|
| 1329 |
+
elif norm_layer == 'LN':
|
| 1330 |
+
if in_format == 'channels_first':
|
| 1331 |
+
layers.append(to_channels_last())
|
| 1332 |
+
layers.append(nn.LayerNorm(dim, eps=eps))
|
| 1333 |
+
if out_format == 'channels_first':
|
| 1334 |
+
layers.append(to_channels_first())
|
| 1335 |
+
else:
|
| 1336 |
+
raise NotImplementedError(
|
| 1337 |
+
f'build_norm_layer does not support {norm_layer}')
|
| 1338 |
+
return nn.Sequential(*layers)
|
| 1339 |
+
|
| 1340 |
+
|
| 1341 |
+
class to_channels_first(nn.Module):
|
| 1342 |
+
|
| 1343 |
+
def __init__(self):
|
| 1344 |
+
super().__init__()
|
| 1345 |
+
|
| 1346 |
+
def forward(self, x):
|
| 1347 |
+
return x.permute(0, 3, 1, 2)
|
| 1348 |
+
|
| 1349 |
+
|
| 1350 |
+
class to_channels_last(nn.Module):
|
| 1351 |
+
|
| 1352 |
+
def __init__(self):
|
| 1353 |
+
super().__init__()
|
| 1354 |
+
|
| 1355 |
+
def forward(self, x):
|
| 1356 |
+
return x.permute(0, 2, 3, 1)
|
| 1357 |
+
|
| 1358 |
+
|
| 1359 |
+
|
| 1360 |
+
### dataset.py
|
| 1361 |
+
|
| 1362 |
+
_class_labels_TR_sorted = (
|
| 1363 |
+
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
|
| 1364 |
+
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
|
| 1365 |
+
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
|
| 1366 |
+
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
|
| 1367 |
+
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
|
| 1368 |
+
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
|
| 1369 |
+
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
|
| 1370 |
+
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
|
| 1371 |
+
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
|
| 1372 |
+
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
|
| 1373 |
+
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
|
| 1374 |
+
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
|
| 1375 |
+
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
|
| 1376 |
+
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
|
| 1377 |
+
)
|
| 1378 |
+
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
|
| 1379 |
+
|
| 1380 |
+
|
| 1381 |
+
### models/backbones/build_backbones.py
|
| 1382 |
+
|
| 1383 |
+
import torch
|
| 1384 |
+
import torch.nn as nn
|
| 1385 |
+
from collections import OrderedDict
|
| 1386 |
+
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
| 1387 |
+
# from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
|
| 1388 |
+
# from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
| 1389 |
+
# from config import Config
|
| 1390 |
+
|
| 1391 |
+
|
| 1392 |
+
config = Config()
|
| 1393 |
+
|
| 1394 |
+
def build_backbone(bb_name, pretrained=True, params_settings=''):
|
| 1395 |
+
if bb_name == 'vgg16':
|
| 1396 |
+
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
|
| 1397 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
|
| 1398 |
+
elif bb_name == 'vgg16bn':
|
| 1399 |
+
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
|
| 1400 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
|
| 1401 |
+
elif bb_name == 'resnet50':
|
| 1402 |
+
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
|
| 1403 |
+
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
|
| 1404 |
+
else:
|
| 1405 |
+
bb = eval('{}({})'.format(bb_name, params_settings))
|
| 1406 |
+
if pretrained:
|
| 1407 |
+
bb = load_weights(bb, bb_name)
|
| 1408 |
+
return bb
|
| 1409 |
+
|
| 1410 |
+
def load_weights(model, model_name):
|
| 1411 |
+
save_model = torch.load(config.weights[model_name], map_location='cpu')
|
| 1412 |
+
model_dict = model.state_dict()
|
| 1413 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
|
| 1414 |
+
# to ignore the weights with mismatched size when I modify the backbone itself.
|
| 1415 |
+
if not state_dict:
|
| 1416 |
+
save_model_keys = list(save_model.keys())
|
| 1417 |
+
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
|
| 1418 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
|
| 1419 |
+
if not state_dict or not sub_item:
|
| 1420 |
+
print('Weights are not successully loaded. Check the state dict of weights file.')
|
| 1421 |
+
return None
|
| 1422 |
+
else:
|
| 1423 |
+
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
|
| 1424 |
+
model_dict.update(state_dict)
|
| 1425 |
+
model.load_state_dict(model_dict)
|
| 1426 |
+
return model
|
| 1427 |
+
|
| 1428 |
+
|
| 1429 |
+
|
| 1430 |
+
### models/modules/decoder_blocks.py
|
| 1431 |
+
|
| 1432 |
+
import torch
|
| 1433 |
+
import torch.nn as nn
|
| 1434 |
+
# from models.aspp import ASPP, ASPPDeformable
|
| 1435 |
+
# from config import Config
|
| 1436 |
+
|
| 1437 |
+
|
| 1438 |
+
# config = Config()
|
| 1439 |
+
|
| 1440 |
+
|
| 1441 |
+
class BasicDecBlk(nn.Module):
|
| 1442 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
| 1443 |
+
super(BasicDecBlk, self).__init__()
|
| 1444 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
| 1445 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
| 1446 |
+
self.relu_in = nn.ReLU(inplace=True)
|
| 1447 |
+
if config.dec_att == 'ASPP':
|
| 1448 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
| 1449 |
+
elif config.dec_att == 'ASPPDeformable':
|
| 1450 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 1451 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 1452 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
| 1453 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 1454 |
+
|
| 1455 |
+
def forward(self, x):
|
| 1456 |
+
x = self.conv_in(x)
|
| 1457 |
+
x = self.bn_in(x)
|
| 1458 |
+
x = self.relu_in(x)
|
| 1459 |
+
if hasattr(self, 'dec_att'):
|
| 1460 |
+
x = self.dec_att(x)
|
| 1461 |
+
x = self.conv_out(x)
|
| 1462 |
+
x = self.bn_out(x)
|
| 1463 |
+
return x
|
| 1464 |
+
|
| 1465 |
+
|
| 1466 |
+
class ResBlk(nn.Module):
|
| 1467 |
+
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
| 1468 |
+
super(ResBlk, self).__init__()
|
| 1469 |
+
if out_channels is None:
|
| 1470 |
+
out_channels = in_channels
|
| 1471 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
| 1472 |
+
|
| 1473 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
| 1474 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
| 1475 |
+
self.relu_in = nn.ReLU(inplace=True)
|
| 1476 |
+
|
| 1477 |
+
if config.dec_att == 'ASPP':
|
| 1478 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
| 1479 |
+
elif config.dec_att == 'ASPPDeformable':
|
| 1480 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
| 1481 |
+
|
| 1482 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
| 1483 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 1484 |
+
|
| 1485 |
+
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
| 1486 |
+
|
| 1487 |
+
def forward(self, x):
|
| 1488 |
+
_x = self.conv_resi(x)
|
| 1489 |
+
x = self.conv_in(x)
|
| 1490 |
+
x = self.bn_in(x)
|
| 1491 |
+
x = self.relu_in(x)
|
| 1492 |
+
if hasattr(self, 'dec_att'):
|
| 1493 |
+
x = self.dec_att(x)
|
| 1494 |
+
x = self.conv_out(x)
|
| 1495 |
+
x = self.bn_out(x)
|
| 1496 |
+
return x + _x
|
| 1497 |
+
|
| 1498 |
+
|
| 1499 |
+
|
| 1500 |
+
### models/modules/lateral_blocks.py
|
| 1501 |
+
|
| 1502 |
+
import numpy as np
|
| 1503 |
+
import torch
|
| 1504 |
+
import torch.nn as nn
|
| 1505 |
+
import torch.nn.functional as F
|
| 1506 |
+
from functools import partial
|
| 1507 |
+
|
| 1508 |
+
# from config import Config
|
| 1509 |
+
|
| 1510 |
+
|
| 1511 |
+
# config = Config()
|
| 1512 |
+
|
| 1513 |
+
|
| 1514 |
+
class BasicLatBlk(nn.Module):
|
| 1515 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
| 1516 |
+
super(BasicLatBlk, self).__init__()
|
| 1517 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
| 1518 |
+
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
| 1519 |
+
|
| 1520 |
+
def forward(self, x):
|
| 1521 |
+
x = self.conv(x)
|
| 1522 |
+
return x
|
| 1523 |
+
|
| 1524 |
+
|
| 1525 |
+
|
| 1526 |
+
### models/modules/aspp.py
|
| 1527 |
+
|
| 1528 |
+
import torch
|
| 1529 |
+
import torch.nn as nn
|
| 1530 |
+
import torch.nn.functional as F
|
| 1531 |
+
# from models.deform_conv import DeformableConv2d
|
| 1532 |
+
# from config import Config
|
| 1533 |
+
|
| 1534 |
+
|
| 1535 |
+
# config = Config()
|
| 1536 |
+
|
| 1537 |
+
|
| 1538 |
+
class _ASPPModule(nn.Module):
|
| 1539 |
+
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
| 1540 |
+
super(_ASPPModule, self).__init__()
|
| 1541 |
+
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
| 1542 |
+
stride=1, padding=padding, dilation=dilation, bias=False)
|
| 1543 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
| 1544 |
+
self.relu = nn.ReLU(inplace=True)
|
| 1545 |
+
|
| 1546 |
+
def forward(self, x):
|
| 1547 |
+
x = self.atrous_conv(x)
|
| 1548 |
+
x = self.bn(x)
|
| 1549 |
+
|
| 1550 |
+
return self.relu(x)
|
| 1551 |
+
|
| 1552 |
+
|
| 1553 |
+
class ASPP(nn.Module):
|
| 1554 |
+
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
| 1555 |
+
super(ASPP, self).__init__()
|
| 1556 |
+
self.down_scale = 1
|
| 1557 |
+
if out_channels is None:
|
| 1558 |
+
out_channels = in_channels
|
| 1559 |
+
self.in_channelster = 256 // self.down_scale
|
| 1560 |
+
if output_stride == 16:
|
| 1561 |
+
dilations = [1, 6, 12, 18]
|
| 1562 |
+
elif output_stride == 8:
|
| 1563 |
+
dilations = [1, 12, 24, 36]
|
| 1564 |
+
else:
|
| 1565 |
+
raise NotImplementedError
|
| 1566 |
+
|
| 1567 |
+
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
|
| 1568 |
+
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
|
| 1569 |
+
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
|
| 1570 |
+
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
|
| 1571 |
+
|
| 1572 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
| 1573 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
| 1574 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 1575 |
+
nn.ReLU(inplace=True))
|
| 1576 |
+
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
| 1577 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 1578 |
+
self.relu = nn.ReLU(inplace=True)
|
| 1579 |
+
self.dropout = nn.Dropout(0.5)
|
| 1580 |
+
|
| 1581 |
+
def forward(self, x):
|
| 1582 |
+
x1 = self.aspp1(x)
|
| 1583 |
+
x2 = self.aspp2(x)
|
| 1584 |
+
x3 = self.aspp3(x)
|
| 1585 |
+
x4 = self.aspp4(x)
|
| 1586 |
+
x5 = self.global_avg_pool(x)
|
| 1587 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
| 1588 |
+
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
| 1589 |
+
|
| 1590 |
+
x = self.conv1(x)
|
| 1591 |
+
x = self.bn1(x)
|
| 1592 |
+
x = self.relu(x)
|
| 1593 |
+
|
| 1594 |
+
return self.dropout(x)
|
| 1595 |
+
|
| 1596 |
+
|
| 1597 |
+
##################### Deformable
|
| 1598 |
+
class _ASPPModuleDeformable(nn.Module):
|
| 1599 |
+
def __init__(self, in_channels, planes, kernel_size, padding):
|
| 1600 |
+
super(_ASPPModuleDeformable, self).__init__()
|
| 1601 |
+
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
| 1602 |
+
stride=1, padding=padding, bias=False)
|
| 1603 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
| 1604 |
+
self.relu = nn.ReLU(inplace=True)
|
| 1605 |
+
|
| 1606 |
+
def forward(self, x):
|
| 1607 |
+
x = self.atrous_conv(x)
|
| 1608 |
+
x = self.bn(x)
|
| 1609 |
+
|
| 1610 |
+
return self.relu(x)
|
| 1611 |
+
|
| 1612 |
+
|
| 1613 |
+
class ASPPDeformable(nn.Module):
|
| 1614 |
+
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
| 1615 |
+
super(ASPPDeformable, self).__init__()
|
| 1616 |
+
self.down_scale = 1
|
| 1617 |
+
if out_channels is None:
|
| 1618 |
+
out_channels = in_channels
|
| 1619 |
+
self.in_channelster = 256 // self.down_scale
|
| 1620 |
+
|
| 1621 |
+
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
| 1622 |
+
self.aspp_deforms = nn.ModuleList([
|
| 1623 |
+
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
|
| 1624 |
+
])
|
| 1625 |
+
|
| 1626 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
| 1627 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
| 1628 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
| 1629 |
+
nn.ReLU(inplace=True))
|
| 1630 |
+
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
| 1631 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
| 1632 |
+
self.relu = nn.ReLU(inplace=True)
|
| 1633 |
+
self.dropout = nn.Dropout(0.5)
|
| 1634 |
+
|
| 1635 |
+
def forward(self, x):
|
| 1636 |
+
x1 = self.aspp1(x)
|
| 1637 |
+
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
|
| 1638 |
+
x5 = self.global_avg_pool(x)
|
| 1639 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
| 1640 |
+
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
|
| 1641 |
+
|
| 1642 |
+
x = self.conv1(x)
|
| 1643 |
+
x = self.bn1(x)
|
| 1644 |
+
x = self.relu(x)
|
| 1645 |
+
|
| 1646 |
+
return self.dropout(x)
|
| 1647 |
+
|
| 1648 |
+
|
| 1649 |
+
|
| 1650 |
+
### models/refinement/refiner.py
|
| 1651 |
+
|
| 1652 |
+
import torch
|
| 1653 |
+
import torch.nn as nn
|
| 1654 |
+
from collections import OrderedDict
|
| 1655 |
+
import torch
|
| 1656 |
+
import torch.nn as nn
|
| 1657 |
+
import torch.nn.functional as F
|
| 1658 |
+
from torchvision.models import vgg16, vgg16_bn
|
| 1659 |
+
from torchvision.models import resnet50
|
| 1660 |
+
|
| 1661 |
+
# from config import Config
|
| 1662 |
+
# from dataset import class_labels_TR_sorted
|
| 1663 |
+
# from models.build_backbone import build_backbone
|
| 1664 |
+
# from models.decoder_blocks import BasicDecBlk
|
| 1665 |
+
# from models.lateral_blocks import BasicLatBlk
|
| 1666 |
+
# from models.ing import *
|
| 1667 |
+
# from models.stem_layer import StemLayer
|
| 1668 |
+
|
| 1669 |
+
|
| 1670 |
+
class RefinerPVTInChannels4(nn.Module):
|
| 1671 |
+
def __init__(self, in_channels=3+1):
|
| 1672 |
+
super(RefinerPVTInChannels4, self).__init__()
|
| 1673 |
+
self.config = Config()
|
| 1674 |
+
self.epoch = 1
|
| 1675 |
+
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
| 1676 |
+
|
| 1677 |
+
lateral_channels_in_collection = {
|
| 1678 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
| 1679 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
| 1680 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
| 1681 |
+
}
|
| 1682 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
| 1683 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
| 1684 |
+
|
| 1685 |
+
self.decoder = Decoder(channels)
|
| 1686 |
+
|
| 1687 |
+
if 0:
|
| 1688 |
+
for key, value in self.named_parameters():
|
| 1689 |
+
if 'bb.' in key:
|
| 1690 |
+
value.requires_grad = False
|
| 1691 |
+
|
| 1692 |
+
def forward(self, x):
|
| 1693 |
+
if isinstance(x, list):
|
| 1694 |
+
x = torch.cat(x, dim=1)
|
| 1695 |
+
########## Encoder ##########
|
| 1696 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
| 1697 |
+
x1 = self.bb.conv1(x)
|
| 1698 |
+
x2 = self.bb.conv2(x1)
|
| 1699 |
+
x3 = self.bb.conv3(x2)
|
| 1700 |
+
x4 = self.bb.conv4(x3)
|
| 1701 |
+
else:
|
| 1702 |
+
x1, x2, x3, x4 = self.bb(x)
|
| 1703 |
+
|
| 1704 |
+
x4 = self.squeeze_module(x4)
|
| 1705 |
+
|
| 1706 |
+
########## Decoder ##########
|
| 1707 |
+
|
| 1708 |
+
features = [x, x1, x2, x3, x4]
|
| 1709 |
+
scaled_preds = self.decoder(features)
|
| 1710 |
+
|
| 1711 |
+
return scaled_preds
|
| 1712 |
+
|
| 1713 |
+
|
| 1714 |
+
class Refiner(nn.Module):
|
| 1715 |
+
def __init__(self, in_channels=3+1):
|
| 1716 |
+
super(Refiner, self).__init__()
|
| 1717 |
+
self.config = Config()
|
| 1718 |
+
self.epoch = 1
|
| 1719 |
+
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
| 1720 |
+
self.bb = build_backbone(self.config.bb)
|
| 1721 |
+
|
| 1722 |
+
lateral_channels_in_collection = {
|
| 1723 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
| 1724 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
| 1725 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
| 1726 |
+
}
|
| 1727 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
| 1728 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
| 1729 |
+
|
| 1730 |
+
self.decoder = Decoder(channels)
|
| 1731 |
+
|
| 1732 |
+
if 0:
|
| 1733 |
+
for key, value in self.named_parameters():
|
| 1734 |
+
if 'bb.' in key:
|
| 1735 |
+
value.requires_grad = False
|
| 1736 |
+
|
| 1737 |
+
def forward(self, x):
|
| 1738 |
+
if isinstance(x, list):
|
| 1739 |
+
x = torch.cat(x, dim=1)
|
| 1740 |
+
x = self.stem_layer(x)
|
| 1741 |
+
########## Encoder ##########
|
| 1742 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
| 1743 |
+
x1 = self.bb.conv1(x)
|
| 1744 |
+
x2 = self.bb.conv2(x1)
|
| 1745 |
+
x3 = self.bb.conv3(x2)
|
| 1746 |
+
x4 = self.bb.conv4(x3)
|
| 1747 |
+
else:
|
| 1748 |
+
x1, x2, x3, x4 = self.bb(x)
|
| 1749 |
+
|
| 1750 |
+
x4 = self.squeeze_module(x4)
|
| 1751 |
+
|
| 1752 |
+
########## Decoder ##########
|
| 1753 |
+
|
| 1754 |
+
features = [x, x1, x2, x3, x4]
|
| 1755 |
+
scaled_preds = self.decoder(features)
|
| 1756 |
+
|
| 1757 |
+
return scaled_preds
|
| 1758 |
+
|
| 1759 |
+
|
| 1760 |
+
class Decoder(nn.Module):
|
| 1761 |
+
def __init__(self, channels):
|
| 1762 |
+
super(Decoder, self).__init__()
|
| 1763 |
+
self.config = Config()
|
| 1764 |
+
DecoderBlock = eval('BasicDecBlk')
|
| 1765 |
+
LateralBlock = eval('BasicLatBlk')
|
| 1766 |
+
|
| 1767 |
+
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
| 1768 |
+
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
| 1769 |
+
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
| 1770 |
+
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
| 1771 |
+
|
| 1772 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
| 1773 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
| 1774 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
| 1775 |
+
|
| 1776 |
+
if self.config.ms_supervision:
|
| 1777 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
| 1778 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
| 1779 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
| 1780 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
| 1781 |
+
|
| 1782 |
+
def forward(self, features):
|
| 1783 |
+
x, x1, x2, x3, x4 = features
|
| 1784 |
+
outs = []
|
| 1785 |
+
p4 = self.decoder_block4(x4)
|
| 1786 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
| 1787 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
| 1788 |
+
|
| 1789 |
+
p3 = self.decoder_block3(_p3)
|
| 1790 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 1791 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
| 1792 |
+
|
| 1793 |
+
p2 = self.decoder_block2(_p2)
|
| 1794 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
| 1795 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
| 1796 |
+
|
| 1797 |
+
_p1 = self.decoder_block1(_p1)
|
| 1798 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 1799 |
+
p1_out = self.conv_out1(_p1)
|
| 1800 |
+
|
| 1801 |
+
if self.config.ms_supervision:
|
| 1802 |
+
outs.append(self.conv_ms_spvn_4(p4))
|
| 1803 |
+
outs.append(self.conv_ms_spvn_3(p3))
|
| 1804 |
+
outs.append(self.conv_ms_spvn_2(p2))
|
| 1805 |
+
outs.append(p1_out)
|
| 1806 |
+
return outs
|
| 1807 |
+
|
| 1808 |
+
|
| 1809 |
+
class RefUNet(nn.Module):
|
| 1810 |
+
# Refinement
|
| 1811 |
+
def __init__(self, in_channels=3+1):
|
| 1812 |
+
super(RefUNet, self).__init__()
|
| 1813 |
+
self.encoder_1 = nn.Sequential(
|
| 1814 |
+
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
| 1815 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
| 1816 |
+
nn.BatchNorm2d(64),
|
| 1817 |
+
nn.ReLU(inplace=True)
|
| 1818 |
+
)
|
| 1819 |
+
|
| 1820 |
+
self.encoder_2 = nn.Sequential(
|
| 1821 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
| 1822 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
| 1823 |
+
nn.BatchNorm2d(64),
|
| 1824 |
+
nn.ReLU(inplace=True)
|
| 1825 |
+
)
|
| 1826 |
+
|
| 1827 |
+
self.encoder_3 = nn.Sequential(
|
| 1828 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
| 1829 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
| 1830 |
+
nn.BatchNorm2d(64),
|
| 1831 |
+
nn.ReLU(inplace=True)
|
| 1832 |
+
)
|
| 1833 |
+
|
| 1834 |
+
self.encoder_4 = nn.Sequential(
|
| 1835 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
| 1836 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
| 1837 |
+
nn.BatchNorm2d(64),
|
| 1838 |
+
nn.ReLU(inplace=True)
|
| 1839 |
+
)
|
| 1840 |
+
|
| 1841 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
| 1842 |
+
#####
|
| 1843 |
+
self.decoder_5 = nn.Sequential(
|
| 1844 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
| 1845 |
+
nn.BatchNorm2d(64),
|
| 1846 |
+
nn.ReLU(inplace=True)
|
| 1847 |
+
)
|
| 1848 |
+
#####
|
| 1849 |
+
self.decoder_4 = nn.Sequential(
|
| 1850 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
| 1851 |
+
nn.BatchNorm2d(64),
|
| 1852 |
+
nn.ReLU(inplace=True)
|
| 1853 |
+
)
|
| 1854 |
+
|
| 1855 |
+
self.decoder_3 = nn.Sequential(
|
| 1856 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
| 1857 |
+
nn.BatchNorm2d(64),
|
| 1858 |
+
nn.ReLU(inplace=True)
|
| 1859 |
+
)
|
| 1860 |
+
|
| 1861 |
+
self.decoder_2 = nn.Sequential(
|
| 1862 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
| 1863 |
+
nn.BatchNorm2d(64),
|
| 1864 |
+
nn.ReLU(inplace=True)
|
| 1865 |
+
)
|
| 1866 |
+
|
| 1867 |
+
self.decoder_1 = nn.Sequential(
|
| 1868 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
| 1869 |
+
nn.BatchNorm2d(64),
|
| 1870 |
+
nn.ReLU(inplace=True)
|
| 1871 |
+
)
|
| 1872 |
+
|
| 1873 |
+
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
| 1874 |
+
|
| 1875 |
+
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
| 1876 |
+
|
| 1877 |
+
def forward(self, x):
|
| 1878 |
+
outs = []
|
| 1879 |
+
if isinstance(x, list):
|
| 1880 |
+
x = torch.cat(x, dim=1)
|
| 1881 |
+
hx = x
|
| 1882 |
+
|
| 1883 |
+
hx1 = self.encoder_1(hx)
|
| 1884 |
+
hx2 = self.encoder_2(hx1)
|
| 1885 |
+
hx3 = self.encoder_3(hx2)
|
| 1886 |
+
hx4 = self.encoder_4(hx3)
|
| 1887 |
+
|
| 1888 |
+
hx = self.decoder_5(self.pool4(hx4))
|
| 1889 |
+
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
| 1890 |
+
|
| 1891 |
+
d4 = self.decoder_4(hx)
|
| 1892 |
+
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
| 1893 |
+
|
| 1894 |
+
d3 = self.decoder_3(hx)
|
| 1895 |
+
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
| 1896 |
+
|
| 1897 |
+
d2 = self.decoder_2(hx)
|
| 1898 |
+
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
| 1899 |
+
|
| 1900 |
+
d1 = self.decoder_1(hx)
|
| 1901 |
+
|
| 1902 |
+
x = self.conv_d0(d1)
|
| 1903 |
+
outs.append(x)
|
| 1904 |
+
return outs
|
| 1905 |
+
|
| 1906 |
+
|
| 1907 |
+
|
| 1908 |
+
### models/stem_layer.py
|
| 1909 |
+
|
| 1910 |
+
import torch.nn as nn
|
| 1911 |
+
# from utils import build_act_layer, build_norm_layer
|
| 1912 |
+
|
| 1913 |
+
|
| 1914 |
+
class StemLayer(nn.Module):
|
| 1915 |
+
r""" Stem layer of InternImage
|
| 1916 |
+
Args:
|
| 1917 |
+
in_channels (int): number of input channels
|
| 1918 |
+
out_channels (int): number of output channels
|
| 1919 |
+
act_layer (str): activation layer
|
| 1920 |
+
norm_layer (str): normalization layer
|
| 1921 |
+
"""
|
| 1922 |
+
|
| 1923 |
+
def __init__(self,
|
| 1924 |
+
in_channels=3+1,
|
| 1925 |
+
inter_channels=48,
|
| 1926 |
+
out_channels=96,
|
| 1927 |
+
act_layer='GELU',
|
| 1928 |
+
norm_layer='BN'):
|
| 1929 |
+
super().__init__()
|
| 1930 |
+
self.conv1 = nn.Conv2d(in_channels,
|
| 1931 |
+
inter_channels,
|
| 1932 |
+
kernel_size=3,
|
| 1933 |
+
stride=1,
|
| 1934 |
+
padding=1)
|
| 1935 |
+
self.norm1 = build_norm_layer(
|
| 1936 |
+
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
| 1937 |
+
)
|
| 1938 |
+
self.act = build_act_layer(act_layer)
|
| 1939 |
+
self.conv2 = nn.Conv2d(inter_channels,
|
| 1940 |
+
out_channels,
|
| 1941 |
+
kernel_size=3,
|
| 1942 |
+
stride=1,
|
| 1943 |
+
padding=1)
|
| 1944 |
+
self.norm2 = build_norm_layer(
|
| 1945 |
+
out_channels, norm_layer, 'channels_first', 'channels_first'
|
| 1946 |
+
)
|
| 1947 |
+
|
| 1948 |
+
def forward(self, x):
|
| 1949 |
+
x = self.conv1(x)
|
| 1950 |
+
x = self.norm1(x)
|
| 1951 |
+
x = self.act(x)
|
| 1952 |
+
x = self.conv2(x)
|
| 1953 |
+
x = self.norm2(x)
|
| 1954 |
+
return x
|
| 1955 |
+
|
| 1956 |
+
|
| 1957 |
+
### models/birefnet.py
|
| 1958 |
+
|
| 1959 |
+
import torch
|
| 1960 |
+
import torch.nn as nn
|
| 1961 |
+
import torch.nn.functional as F
|
| 1962 |
+
from kornia.filters import laplacian
|
| 1963 |
+
from transformers import PreTrainedModel
|
| 1964 |
+
|
| 1965 |
+
# from config import Config
|
| 1966 |
+
# from dataset import class_labels_TR_sorted
|
| 1967 |
+
# from models.build_backbone import build_backbone
|
| 1968 |
+
# from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
|
| 1969 |
+
# from models.lateral_blocks import BasicLatBlk
|
| 1970 |
+
# from models.aspp import ASPP, ASPPDeformable
|
| 1971 |
+
# from models.ing import *
|
| 1972 |
+
# from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
|
| 1973 |
+
# from models.stem_layer import StemLayer
|
| 1974 |
+
from .BiRefNet_config import BiRefNetConfig
|
| 1975 |
+
|
| 1976 |
+
|
| 1977 |
+
class BiRefNet(
|
| 1978 |
+
PreTrainedModel
|
| 1979 |
+
):
|
| 1980 |
+
config_class = BiRefNetConfig
|
| 1981 |
+
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
|
| 1982 |
+
super(BiRefNet, self).__init__(config)
|
| 1983 |
+
bb_pretrained = config.bb_pretrained
|
| 1984 |
+
self.config = Config()
|
| 1985 |
+
self.epoch = 1
|
| 1986 |
+
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
| 1987 |
+
|
| 1988 |
+
channels = self.config.lateral_channels_in_collection
|
| 1989 |
+
|
| 1990 |
+
if self.config.auxiliary_classification:
|
| 1991 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
| 1992 |
+
self.cls_head = nn.Sequential(
|
| 1993 |
+
nn.Linear(channels[0], len(class_labels_TR_sorted))
|
| 1994 |
+
)
|
| 1995 |
+
|
| 1996 |
+
if self.config.squeeze_block:
|
| 1997 |
+
self.squeeze_module = nn.Sequential(*[
|
| 1998 |
+
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
|
| 1999 |
+
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
|
| 2000 |
+
])
|
| 2001 |
+
|
| 2002 |
+
self.decoder = Decoder(channels)
|
| 2003 |
+
|
| 2004 |
+
if self.config.ender:
|
| 2005 |
+
self.dec_end = nn.Sequential(
|
| 2006 |
+
nn.Conv2d(1, 16, 3, 1, 1),
|
| 2007 |
+
nn.Conv2d(16, 1, 3, 1, 1),
|
| 2008 |
+
nn.ReLU(inplace=True),
|
| 2009 |
+
)
|
| 2010 |
+
|
| 2011 |
+
# refine patch-level segmentation
|
| 2012 |
+
if self.config.refine:
|
| 2013 |
+
if self.config.refine == 'itself':
|
| 2014 |
+
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
| 2015 |
+
else:
|
| 2016 |
+
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
| 2017 |
+
|
| 2018 |
+
if self.config.freeze_bb:
|
| 2019 |
+
# Freeze the backbone...
|
| 2020 |
+
print(self.named_parameters())
|
| 2021 |
+
for key, value in self.named_parameters():
|
| 2022 |
+
if 'bb.' in key and 'refiner.' not in key:
|
| 2023 |
+
value.requires_grad = False
|
| 2024 |
+
|
| 2025 |
+
def forward_enc(self, x):
|
| 2026 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
| 2027 |
+
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
|
| 2028 |
+
else:
|
| 2029 |
+
x1, x2, x3, x4 = self.bb(x)
|
| 2030 |
+
if self.config.mul_scl_ipt == 'cat':
|
| 2031 |
+
B, C, H, W = x.shape
|
| 2032 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
| 2033 |
+
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
| 2034 |
+
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
| 2035 |
+
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
| 2036 |
+
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
| 2037 |
+
elif self.config.mul_scl_ipt == 'add':
|
| 2038 |
+
B, C, H, W = x.shape
|
| 2039 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
| 2040 |
+
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
| 2041 |
+
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 2042 |
+
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
| 2043 |
+
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
|
| 2044 |
+
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
|
| 2045 |
+
if self.config.cxt:
|
| 2046 |
+
x4 = torch.cat(
|
| 2047 |
+
(
|
| 2048 |
+
*[
|
| 2049 |
+
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
| 2050 |
+
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
| 2051 |
+
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
| 2052 |
+
][-len(self.config.cxt):],
|
| 2053 |
+
x4
|
| 2054 |
+
),
|
| 2055 |
+
dim=1
|
| 2056 |
+
)
|
| 2057 |
+
return (x1, x2, x3, x4), class_preds
|
| 2058 |
+
|
| 2059 |
+
def forward_ori(self, x):
|
| 2060 |
+
########## Encoder ##########
|
| 2061 |
+
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
| 2062 |
+
if self.config.squeeze_block:
|
| 2063 |
+
x4 = self.squeeze_module(x4)
|
| 2064 |
+
########## Decoder ##########
|
| 2065 |
+
features = [x, x1, x2, x3, x4]
|
| 2066 |
+
if self.training and self.config.out_ref:
|
| 2067 |
+
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
|
| 2068 |
+
scaled_preds = self.decoder(features)
|
| 2069 |
+
return scaled_preds, class_preds
|
| 2070 |
+
|
| 2071 |
+
def forward(self, x):
|
| 2072 |
+
scaled_preds, class_preds = self.forward_ori(x)
|
| 2073 |
+
class_preds_lst = [class_preds]
|
| 2074 |
+
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
|
| 2075 |
+
|
| 2076 |
+
|
| 2077 |
+
class Decoder(nn.Module):
|
| 2078 |
+
def __init__(self, channels):
|
| 2079 |
+
super(Decoder, self).__init__()
|
| 2080 |
+
self.config = Config()
|
| 2081 |
+
DecoderBlock = eval(self.config.dec_blk)
|
| 2082 |
+
LateralBlock = eval(self.config.lat_blk)
|
| 2083 |
+
|
| 2084 |
+
if self.config.dec_ipt:
|
| 2085 |
+
self.split = self.config.dec_ipt_split
|
| 2086 |
+
N_dec_ipt = 64
|
| 2087 |
+
DBlock = SimpleConvs
|
| 2088 |
+
ic = 64
|
| 2089 |
+
ipt_cha_opt = 1
|
| 2090 |
+
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
| 2091 |
+
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
| 2092 |
+
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
| 2093 |
+
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
| 2094 |
+
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
|
| 2095 |
+
else:
|
| 2096 |
+
self.split = None
|
| 2097 |
+
|
| 2098 |
+
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
|
| 2099 |
+
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
| 2100 |
+
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
| 2101 |
+
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
| 2102 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
|
| 2103 |
+
|
| 2104 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
| 2105 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
| 2106 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
| 2107 |
+
|
| 2108 |
+
if self.config.ms_supervision:
|
| 2109 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
| 2110 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
| 2111 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
| 2112 |
+
|
| 2113 |
+
if self.config.out_ref:
|
| 2114 |
+
_N = 16
|
| 2115 |
+
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 2116 |
+
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 2117 |
+
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
| 2118 |
+
|
| 2119 |
+
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2120 |
+
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2121 |
+
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2122 |
+
|
| 2123 |
+
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2124 |
+
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2125 |
+
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2126 |
+
|
| 2127 |
+
def get_patches_batch(self, x, p):
|
| 2128 |
+
_size_h, _size_w = p.shape[2:]
|
| 2129 |
+
patches_batch = []
|
| 2130 |
+
for idx in range(x.shape[0]):
|
| 2131 |
+
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
| 2132 |
+
patches_x = []
|
| 2133 |
+
for column_x in columns_x:
|
| 2134 |
+
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
| 2135 |
+
patch_sample = torch.cat(patches_x, dim=1)
|
| 2136 |
+
patches_batch.append(patch_sample)
|
| 2137 |
+
return torch.cat(patches_batch, dim=0)
|
| 2138 |
+
|
| 2139 |
+
def forward(self, features):
|
| 2140 |
+
if self.training and self.config.out_ref:
|
| 2141 |
+
outs_gdt_pred = []
|
| 2142 |
+
outs_gdt_label = []
|
| 2143 |
+
x, x1, x2, x3, x4, gdt_gt = features
|
| 2144 |
+
else:
|
| 2145 |
+
x, x1, x2, x3, x4 = features
|
| 2146 |
+
outs = []
|
| 2147 |
+
|
| 2148 |
+
if self.config.dec_ipt:
|
| 2149 |
+
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
| 2150 |
+
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2151 |
+
p4 = self.decoder_block4(x4)
|
| 2152 |
+
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
| 2153 |
+
if self.config.out_ref:
|
| 2154 |
+
p4_gdt = self.gdt_convs_4(p4)
|
| 2155 |
+
if self.training:
|
| 2156 |
+
# >> GT:
|
| 2157 |
+
m4_dia = m4
|
| 2158 |
+
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
| 2159 |
+
outs_gdt_label.append(gdt_label_main_4)
|
| 2160 |
+
# >> Pred:
|
| 2161 |
+
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
| 2162 |
+
outs_gdt_pred.append(gdt_pred_4)
|
| 2163 |
+
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
| 2164 |
+
# >> Finally:
|
| 2165 |
+
p4 = p4 * gdt_attn_4
|
| 2166 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
| 2167 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
| 2168 |
+
|
| 2169 |
+
if self.config.dec_ipt:
|
| 2170 |
+
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
| 2171 |
+
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2172 |
+
p3 = self.decoder_block3(_p3)
|
| 2173 |
+
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
| 2174 |
+
if self.config.out_ref:
|
| 2175 |
+
p3_gdt = self.gdt_convs_3(p3)
|
| 2176 |
+
if self.training:
|
| 2177 |
+
# >> GT:
|
| 2178 |
+
# m3 --dilation--> m3_dia
|
| 2179 |
+
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
|
| 2180 |
+
m3_dia = m3
|
| 2181 |
+
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
| 2182 |
+
outs_gdt_label.append(gdt_label_main_3)
|
| 2183 |
+
# >> Pred:
|
| 2184 |
+
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
|
| 2185 |
+
# F_3^G --sigmoid--> A_3^G
|
| 2186 |
+
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
|
| 2187 |
+
outs_gdt_pred.append(gdt_pred_3)
|
| 2188 |
+
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
|
| 2189 |
+
# >> Finally:
|
| 2190 |
+
# p3 = p3 * A_3^G
|
| 2191 |
+
p3 = p3 * gdt_attn_3
|
| 2192 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
| 2193 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
| 2194 |
+
|
| 2195 |
+
if self.config.dec_ipt:
|
| 2196 |
+
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
| 2197 |
+
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2198 |
+
p2 = self.decoder_block2(_p2)
|
| 2199 |
+
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
| 2200 |
+
if self.config.out_ref:
|
| 2201 |
+
p2_gdt = self.gdt_convs_2(p2)
|
| 2202 |
+
if self.training:
|
| 2203 |
+
# >> GT:
|
| 2204 |
+
m2_dia = m2
|
| 2205 |
+
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
| 2206 |
+
outs_gdt_label.append(gdt_label_main_2)
|
| 2207 |
+
# >> Pred:
|
| 2208 |
+
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
|
| 2209 |
+
outs_gdt_pred.append(gdt_pred_2)
|
| 2210 |
+
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
|
| 2211 |
+
# >> Finally:
|
| 2212 |
+
p2 = p2 * gdt_attn_2
|
| 2213 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
| 2214 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
| 2215 |
+
|
| 2216 |
+
if self.config.dec_ipt:
|
| 2217 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 2218 |
+
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2219 |
+
_p1 = self.decoder_block1(_p1)
|
| 2220 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 2221 |
+
|
| 2222 |
+
if self.config.dec_ipt:
|
| 2223 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
| 2224 |
+
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2225 |
+
p1_out = self.conv_out1(_p1)
|
| 2226 |
+
|
| 2227 |
+
if self.config.ms_supervision:
|
| 2228 |
+
outs.append(m4)
|
| 2229 |
+
outs.append(m3)
|
| 2230 |
+
outs.append(m2)
|
| 2231 |
+
outs.append(p1_out)
|
| 2232 |
+
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
|
| 2233 |
+
|
| 2234 |
+
|
| 2235 |
+
class SimpleConvs(nn.Module):
|
| 2236 |
+
def __init__(
|
| 2237 |
+
self, in_channels: int, out_channels: int, inter_channels=64
|
| 2238 |
+
) -> None:
|
| 2239 |
+
super().__init__()
|
| 2240 |
+
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
| 2241 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
| 2242 |
+
|
| 2243 |
+
def forward(self, x):
|
| 2244 |
+
return self.conv_out(self.conv1(x))
|
collage5.png
ADDED
|
Git LFS Details
|
config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "ZhengPeng7/BiRefNet",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BiRefNet"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "BiRefNet_config.BiRefNetConfig",
|
| 8 |
+
"AutoModelForImageSegmentation": "birefnet.BiRefNet"
|
| 9 |
+
},
|
| 10 |
+
"custom_pipelines": {
|
| 11 |
+
"image-segmentation": {
|
| 12 |
+
"pt": [
|
| 13 |
+
"AutoModelForImageSegmentation"
|
| 14 |
+
],
|
| 15 |
+
"tf": [],
|
| 16 |
+
"type": "image"
|
| 17 |
+
}
|
| 18 |
+
},
|
| 19 |
+
"bb_pretrained": false
|
| 20 |
+
}
|
diagram1.png
ADDED
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:566ed80c3d95f87ada6864d4cbe2290a1c5eb1c7bb0b123e984f60f76b02c3a7
|
| 3 |
+
size 884878856
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5b486f08200f513f460da46dd701db5fbb47d79b4be4b708a19444bcd4e79958
|
| 3 |
+
size 1024331469
|
onnx/model_bnb4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadc9222fbffa53a348efea52d97475350ecee463a4a46f452e6e6b7b8757d25
|
| 3 |
+
size 355288046
|
onnx/model_fp16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9dc47db40d113090ba5d7a13d8fcfd9ee4eda510ce92613219b2fe19da4746f6
|
| 3 |
+
size 513576499
|
onnx/model_int8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8ee7690d8c5e7fc45d7b4938ac2fe4eab63fdeddd537673cda2d4c6e74809af
|
| 3 |
+
size 366087445
|
onnx/model_q4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a813e0eab56c982b71254214f41fa860cc7b565a6f2aab55d1f99f41c646ece1
|
| 3 |
+
size 367451512
|
onnx/model_q4f16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bfeb5f93220eb19f6747c217b62cf04342840c4e973f55bf64e9762919f446d
|
| 3 |
+
size 233815293
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcea23951a378f92634834888896cc1eec54655366ae6e949282646ce17c5420
|
| 3 |
+
size 366087549
|
onnx/model_uint8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcea23951a378f92634834888896cc1eec54655366ae6e949282646ce17c5420
|
| 3 |
+
size 366087549
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"do_rescale": true,
|
| 4 |
+
"do_resize": true,
|
| 5 |
+
"feature_extractor_type": "ViTFeatureExtractor",
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.485,
|
| 8 |
+
0.456,
|
| 9 |
+
0.406
|
| 10 |
+
],
|
| 11 |
+
"image_processor_type": "ViTFeatureExtractor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.229,
|
| 14 |
+
0.224,
|
| 15 |
+
0.225
|
| 16 |
+
],
|
| 17 |
+
"resample": 2,
|
| 18 |
+
"rescale_factor": 0.00392156862745098,
|
| 19 |
+
"size": {
|
| 20 |
+
"height": 1024,
|
| 21 |
+
"width": 1024
|
| 22 |
+
}
|
| 23 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0986c2881028a2d0ef9b638ab06bc4cfe7c529760d451eaa7098ade2592015f2
|
| 3 |
+
size 885079136
|
t4.png
ADDED
|
Git LFS Details
|