--- license: gemma license_name: license license_link: LICENSE metrics: - bleu - comet base_model: - ModelSpace/GemmaX2-28-9B-Pretrain pipeline_tag: translation library_name: transformers language: - ar - bn - cs - de - en - es - fa - fr - he - hi - id - it - ja - km - ko - lo - ms - my - nl - pl - pt - ru - th - tl - tr - ur - vi - zh --- ## Model Description GemmaX2-28-9B-v0.1 is an LLM-based translation model. It has been fintuned on GemmaX2-28-9B-Pretrain, which is a language model developed through continual pretraining of Gemma2-9B using a mix of 56 billion tokens from both monolingual and parallel data across 28 different languages. Please find more details in our paper: [Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study](https://arxiv.org/abs/2502.02481). - **Developed by:** Xiaomi - **Model type:** GemmaX2-28-9B-Pretrain is obtained by continually pretraining Gemma2-9B on a large amount of monolingual and parallel data. Subsequently, GemmaX2-28-9B-v0.1 is derived through supervised finetuning on a small set of high-quality translation instruction data. - **Languages:** Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese. ## Model Performance ![Experimental Result](main.png) ## Run the model ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "ModelSpace/GemmaX2-28-9B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) text = "Translate this from Chinese to English:\nChinese: 我爱机器翻译\nEnglish:" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Citation ```bibtex @misc{cui2025multilingualmachinetranslationopen, title={Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study}, author={Menglong Cui and Pengzhi Gao and Wei Liu and Jian Luan and Bin Wang}, year={2025}, eprint={2502.02481}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2502.02481}, } ``` ## Limitations GemmaX2-28-9B-v0.1 only supports the 28 languages listed above and does not guarantee strong translation performance for other languages. We will continue to enhance the translation performance of GemmaX2-28-9B, and future models will be released in due course.