ModelSpace commited on
Commit
342b55f
·
verified ·
1 Parent(s): 0a37790

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -35
README.md CHANGED
@@ -1,61 +1,64 @@
1
  ---
2
- license: other
3
  license_name: license
4
  license_link: LICENSE
5
  base_model:
6
  - google/gemma-2-9b
7
  pipeline_tag: translation
8
  library_name: transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
- # Model Card for GemmaX2-28
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- GemmaX2-28-9B-Pretrain is a language model that results from continual pretraining of Gemma2-9B on a mix of 56 billion tokens of monolingual and parallel data in 28 different languages — Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese.
17
-
18
- GemmaX2-28-9B-v0.1 is the first model in the series. Compared to the current open-source state-of-the-art (SOTA) models, it achieves optimal translation performance across 28 languages, even reaching performance comparable to GPT-4 and Google Translate, indicating it has achieved translation capabilities on par with industry standards.
19
 
20
  - **Developed by:** Xiaomi
21
- - **Model type:** A 9B parameter model base on Gemma2, we obtained GemmaX2-28-9B-Pretrain by continuing pre-training on a large amount of monolingual and parallel data. Afterward, GemmaX2-28-9B-v0.1 was derived through supervised fine-tuning on a small set of high-quality instruction data.
22
- - **Language(s) (NLP):** Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese.
23
- - **License:** gemma
24
 
25
- ### Model Source
26
 
27
  - paper: [Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study](https://arxiv.org/pdf/2502.02481)
28
 
29
- ### Model Performance
30
 
31
  ![Experimental Result](main.png)
32
 
33
- ## Limitations
34
-
35
- GemmaX2-28-9B-v0.1 supports only the 28 most commonly used languages and does not guarantee powerful translation performance for other languages. Additionally, we will continue to improve GemmaX2-28-9B's translation performance, and future models will be release in due course.
36
-
37
-
38
-
39
- ## Run the model
40
-
41
- ```python
42
- from transformers import AutoModelForCausalLM, AutoTokenizer
43
-
44
- model_id = "ModelSpace/GemmaX2-28-9B-Pretrain"
45
- tokenizer = AutoTokenizer.from_pretrained(model_id)
46
-
47
- model = AutoModelForCausalLM.from_pretrained(model_id)
48
-
49
- text = "Translate this from Chinese to English:\nChinese: 我爱机器翻译\nEnglish:"
50
- inputs = tokenizer(text, return_tensors="pt")
51
 
52
- outputs = model.generate(**inputs, max_new_tokens=50)
53
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
54
- ```
55
 
56
- ### Training Data
57
 
58
- We collected monolingual data from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400). For parallel data, we collected all Chinese-centric and English-centric parallel dataset from the [OPUS](https://opus.nlpl.eu/) collection up to Auguest 2024 and underwent a series of filtering processes, such as language detection, semantic duplication filtering, quality filtering, and more.
59
 
60
  ## Citation
61
 
 
1
  ---
2
+ license: gemma
3
  license_name: license
4
  license_link: LICENSE
5
  base_model:
6
  - google/gemma-2-9b
7
  pipeline_tag: translation
8
  library_name: transformers
9
+ language:
10
+ - ar
11
+ - bn
12
+ - cs
13
+ - de
14
+ - en
15
+ - es
16
+ - fa
17
+ - fr
18
+ - he
19
+ - hi
20
+ - id
21
+ - it
22
+ - ja
23
+ - km
24
+ - ko
25
+ - lo
26
+ - ms
27
+ - my
28
+ - nl
29
+ - pl
30
+ - pt
31
+ - ru
32
+ - th
33
+ - tl
34
+ - tr
35
+ - ur
36
+ - vi
37
+ - zh
38
  ---
 
39
 
 
40
 
 
41
 
42
+ ## Model Description
43
+ GemmaX2-28-9B-Pretrain is a language model developed through continual pretraining of Gemma2-9B using a mix of 56 billion tokens from both monolingual and parallel data across 28 different languages. Please find more details in our paper: [Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study](https://arxiv.org/pdf/2502.02481).
 
44
 
45
  - **Developed by:** Xiaomi
46
+ - **Model type:** GemmaX2-28-9B-Pretrain is obtained by continually pretraining Gemma2-9B on a large amount of monolingual and parallel data. Subsequently, GemmaX2-28-9B-v0.1 is derived through supervised finetuning on a small set of high-quality translation instruction data.
47
+ - **Languages:** Arabic, Bengali, Czech, German, English, Spanish, Persian, French, Hebrew, Hindi, Indonesian, Italian, Japanese, Khmer, Korean, Lao, Malay, Burmese, Dutch, polish, Portuguese, Russian, Thai, Tagalog, Turkish, Urdu, Vietnamese, Chinese.
 
48
 
49
+ ## Model Source
50
 
51
  - paper: [Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study](https://arxiv.org/pdf/2502.02481)
52
 
53
+ ## Model Performance
54
 
55
  ![Experimental Result](main.png)
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ ## Training Data
 
 
59
 
60
+ We collect monolingual data from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400). For parallel data, we collect all Chinese-centric and English-centric parallel datasets from the [OPUS](https://opus.nlpl.eu/) collection up to August 2024 and conduct a series of filtering processes, such as language identification, semantic duplication filtering, quality filtering, and more.
61
 
 
62
 
63
  ## Citation
64