lrl-modelcloud commited on
Commit
877b1f8
·
verified ·
1 Parent(s): 6805f88

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ base_model: Qwen/Qwen2.5-0.5B
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - gptqmodel
10
+ - modelcloud
11
+ - chat
12
+ - qwen2
13
+ - instruct
14
+ - int4
15
+ - gptq
16
+ - 4bit
17
+ - W4A16
18
+ ---
19
+
20
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
21
+
22
+ - **bits**: 4
23
+ - **dynamic**: null
24
+ - **group_size**: 128
25
+ - **desc_act**: true
26
+ - **static_groups**: false
27
+ - **sym**: true
28
+ - **lm_head**: false
29
+ - **true_sequential**: true
30
+ - **quant_method**: "gptq"
31
+ - **checkpoint_format**: "gptq"
32
+ - **meta**:
33
+ - **quantizer**: gptqmodel:1.7.0
34
+ - **uri**: https://github.com/modelcloud/gptqmodel
35
+ - **damp_percent**: 0.1
36
+ - **damp_auto_increment**: 0.0025
37
+
38
+
39
+ ## Example:
40
+ ```python
41
+ from transformers import AutoTokenizer
42
+ from gptqmodel import GPTQModel
43
+
44
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
45
+ model = GPTQModel.load("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
46
+
47
+ messages = [
48
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
49
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
50
+ ]
51
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
52
+
53
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
54
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
55
+
56
+ print(result)
57
+ ```