--- license: apache-2.0 base_model: - meta-llama/Llama-3.1-8B-Instruct tags: - gptqmodel - gptq - v2 --- ## Simple Llama 3.1 8B-Instruct model quantized using GPTQ v2 with C2/en 256 rows of calibration data This is not a production ready quant model but one used to evaluate GPTQ v1 vs GPTQ v2 for post-quant comparison. GPTQ v1 is hosted at: https://huggingface.co/ModelCloud/GPTQ-v1-Llama-3.1-8B-Instruct ## Eval Script using GPTQModel (main branch) and Marlin kernel + lm-eval (main branch) ```py # eval from lm_eval.tasks import TaskManager from lm_eval.utils import make_table with tempfile.TemporaryDirectory() as tmp_dir: results = GPTQModel.eval( QUANT_SAVE_PATH, tasks=[EVAL.LM_EVAL.ARC_CHALLENGE, EVAL.LM_EVAL.GSM8K_PLATINUM_COT], apply_chat_template=True, random_seed=898, output_path= tmp_dir, ) print(make_table(results)) if "groups" in results: print(make_table(results, "groups")) ``` Full quantization and eval reproduction code: https://github.com/ModelCloud/GPTQModel/issues/1545#issuecomment-2811997133 | Tasks |Version| Filter |n-shot| Metric | |Value | |Stderr| |------------------|------:|----------------|-----:|-----------|---|-----:|---|-----:| |arc_challenge| 1|none | 0|acc |↑ |0.5034|± |0.0146| | | |none | 0|acc_norm|↑ |0.5068|± |0.0146| |gsm8k_platinum_cot| 3|flexible-extract| 8|exact_match|↑ |0.7601|± |0.0123| | | |strict-match | 8|exact_match|↑ |0.5211|± |0.0144|