--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-tweet-disaster-classification results: [] --- # bert-base-uncased-tweet-disaster-classification This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5396 - Accuracy: 0.8076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 96 | 0.6598 | 0.7439 | | No log | 2.0 | 192 | 0.4624 | 0.8011 | | No log | 3.0 | 288 | 0.4350 | 0.8148 | | No log | 4.0 | 384 | 0.4326 | 0.8188 | | No log | 5.0 | 480 | 0.4331 | 0.8247 | | 0.4631 | 6.0 | 576 | 0.4566 | 0.8227 | | 0.4631 | 7.0 | 672 | 0.4711 | 0.8194 | | 0.4631 | 8.0 | 768 | 0.5045 | 0.8102 | | 0.4631 | 9.0 | 864 | 0.5400 | 0.8050 | | 0.4631 | 10.0 | 960 | 0.5396 | 0.8076 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0