Mit1208 commited on
Commit
762dd17
·
1 Parent(s): 77da127

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -2
README.md CHANGED
@@ -44,8 +44,51 @@ The following hyperparameters were used during training:
44
  - lr_scheduler_type: cosine
45
  - training_steps: 1000
46
 
47
- ### Training results
48
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
 
51
  ### Framework versions
 
44
  - lr_scheduler_type: cosine
45
  - training_steps: 1000
46
 
47
+ ### Inference Code
48
+
49
+ ```python
50
+ from peft import PeftModel, PeftConfig
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+ import torch
53
+ from transformers import StoppingCriteria
54
+
55
+ config = PeftConfig.from_pretrained("Mit1208/phi-2-universal-NER")
56
+ base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2",device_map="auto", trust_remote_code=True)
57
+ model = PeftModel.from_pretrained(base_model, "Mit1208/phi-2-universal-NER", trust_remote_code=True)
58
+ tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-universal-NER", trust_remote_code=True)
59
+
60
+ conversations = [ { "from": "human", "value": "Text: Mit Patel here from India"}, {"from": "gpt", "value": "I've read this text."},
61
+ {"from":"human", "value":"what is a name of the person in the text?"}]
62
+ inference_text = tokenizer.apply_chat_template(conversations, tokenize=False) + '<|im_start|>gpt:\n'
63
+ inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False)
64
+
65
+ class EosListStoppingCriteria(StoppingCriteria):
66
+ def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")):
67
+ self.eos_sequence = eos_sequence
68
+
69
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
70
+ last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
71
+ return self.eos_sequence in last_ids
72
+
73
+ outputs = model.generate(**inputs, max_length=512, pad_token_id= tokenizer.eos_token_id,
74
+ stopping_criteria = [EosListStoppingCriteria()])
75
+
76
+ text = tokenizer.batch_decode(outputs)[0]
77
+
78
+ print(text)
79
+
80
+ # Output
81
+ '''
82
+ <|im_start|>human
83
+ Text: Mit Patel here from India<|im_end|>
84
+ <|im_start|>gpt
85
+ I've read this text.<|im_end|>
86
+ <|im_start|>human
87
+ what is a name of the person in the text?<|im_end|>
88
+ <|im_start|>gpt:
89
+ ["Mit Patel"]<|im_end|>
90
+ '''
91
+ ```
92
 
93
 
94
  ### Framework versions