--- library_name: transformers tags: - sentiment - classifier license: mit datasets: - financial_phrasebank language: - en --- ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Mit Patel - **Model type:** Text generation/ classifier - **Language(s) (NLP):** English - **Finetuned from model :** Phi-2 ## Training Details https://github.com/mit1280/fined-tuning/blob/main/phi_2_classification_fine_tune.ipynb ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 10000 ### Inference ```python !pip install -q transformers==4.37.2 accelerate==0.27.0 import re from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria import torch tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-classification-sentiment-merged") model = AutoModelForCausalLM.from_pretrained("Mit1208/phi-2-classification-sentiment-merged", device_map="auto", trust_remote_code=True).eval() class EosListStoppingCriteria(StoppingCriteria): def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")): self.eos_sequence = eos_sequence def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: last_ids = input_ids[:,-len(self.eos_sequence):].tolist() return self.eos_sequence in last_ids inf_conv = [{'from': 'human', 'value': "Text: In sales volume , Coca-Cola 's market share has decreased by 2.2 % to 24.2 % ."}, {'from': 'phi', 'value': "I've read this text."}, {'from': 'human', 'value': 'Please determine the sentiment of the given text and choose from the options: Positive, Negative, Neutral, or Cannot be determined.'}] # need to load because model doesn't has classifer head. id2label = {0: 'negative', 1: 'neutral', 2: 'positive'} inference_text = tokenizer.apply_chat_template(inf_conv, tokenize=False) + '<|im_start|>phi:\n' inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False).to('cuda') outputs = model.generate(inputs["input_ids"], max_new_tokens=1024, pad_token_id= tokenizer.eos_token_id, stopping_criteria = [EosListStoppingCriteria()]) text = tokenizer.batch_decode(outputs)[0] answer = text.split("<|im_start|>phi:")[-1].replace("<|im_end|>", "").replace(".", "") sentiment_label = re.search(r'(\d)', answer) sentiment_score = int(sentiment_label.group(1)) if sentiment_score: print(id2label.get(sentiment_score, "none")) else: print("none") ``` ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1