Update README.md
Browse files
README.md
CHANGED
@@ -9,15 +9,6 @@ datasets:
|
|
9 |
language:
|
10 |
- en
|
11 |
---
|
12 |
-
|
13 |
-
# Model Card for Model ID
|
14 |
-
|
15 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
## Model Details
|
20 |
-
|
21 |
### Model Description
|
22 |
|
23 |
<!-- Provide a longer summary of what this model is. -->
|
@@ -32,7 +23,7 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
32 |
|
33 |
|
34 |
## Training Details
|
35 |
-
|
36 |
|
37 |
|
38 |
|
@@ -46,16 +37,6 @@ The following hyperparameters were used during training:
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: cosine
|
48 |
- training_steps: 10000
|
49 |
-
-
|
50 |
-
#### Speeds, Sizes, Times [optional]
|
51 |
-
|
52 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
53 |
-
|
54 |
-
[More Information Needed]
|
55 |
-
|
56 |
-
## Evaluation
|
57 |
-
|
58 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
59 |
|
60 |
### Inference
|
61 |
|
@@ -92,18 +73,12 @@ outputs = model.generate(inputs["input_ids"], max_new_tokens=1024, pad_token_id=
|
|
92 |
stopping_criteria = [EosListStoppingCriteria()])
|
93 |
|
94 |
text = tokenizer.batch_decode(outputs)[0]
|
95 |
-
|
96 |
-
# print(text.split("The correct option is")[-1].replace("<|im_end|>", "").replace(".", ""))
|
97 |
-
|
98 |
-
# Define a dictionary to map values to labels
|
99 |
-
label_map = {"2": "positive", "0": "negative", "1": "neutral"}
|
100 |
answer = text.split("<|im_start|>phi:")[-1].replace("<|im_end|>", "").replace(".", "")
|
101 |
|
102 |
sentiment_label = re.search(r'(\d)', answer)
|
103 |
sentiment_score = int(sentiment_label.group(1))
|
104 |
|
105 |
-
if
|
106 |
-
sentiment_score = int(sentiment_label.group(1))
|
107 |
print(id2label.get(sentiment_score, "none"))
|
108 |
else:
|
109 |
print("none")
|
|
|
9 |
language:
|
10 |
- en
|
11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
### Model Description
|
13 |
|
14 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
23 |
|
24 |
|
25 |
## Training Details
|
26 |
+
https://github.com/mit1280/fined-tuning/blob/main/phi_2_classification_fine_tune.ipynb
|
27 |
|
28 |
|
29 |
|
|
|
37 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
38 |
- lr_scheduler_type: cosine
|
39 |
- training_steps: 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
### Inference
|
42 |
|
|
|
73 |
stopping_criteria = [EosListStoppingCriteria()])
|
74 |
|
75 |
text = tokenizer.batch_decode(outputs)[0]
|
|
|
|
|
|
|
|
|
|
|
76 |
answer = text.split("<|im_start|>phi:")[-1].replace("<|im_end|>", "").replace(".", "")
|
77 |
|
78 |
sentiment_label = re.search(r'(\d)', answer)
|
79 |
sentiment_score = int(sentiment_label.group(1))
|
80 |
|
81 |
+
if sentiment_score:
|
|
|
82 |
print(id2label.get(sentiment_score, "none"))
|
83 |
else:
|
84 |
print("none")
|