--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer - layoutlmv3 - token_classifier - layout_analysis datasets: - doc_lay_net-small metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-DocLayNet results: - task: name: Token Classification type: token-classification dataset: name: doc_lay_net-small type: doc_lay_net-small config: DocLayNet_2022.08_processed_on_2023.01 split: test args: DocLayNet_2022.08_processed_on_2023.01 metrics: - name: Precision type: precision value: 0.6178861788617886 - name: Recall type: recall value: 0.7238095238095238 - name: F1 type: f1 value: 0.6666666666666667 - name: Accuracy type: accuracy value: 0.8719611021069692 language: - en pipeline_tag: token-classification --- # layoutlmv3-finetuned-DocLayNet This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset. It achieves the following results on the evaluation set: - Loss: 0.5644 - Precision: 0.6179 - Recall: 0.7238 - F1: 0.6667 - Accuracy: 0.8720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.3383 | 0.58 | 200 | 0.8358 | 0.3007 | 0.4381 | 0.3566 | 0.7724 | | 0.8308 | 1.16 | 400 | 0.6735 | 0.4634 | 0.5429 | 0.5 | 0.8084 | | 0.518 | 1.74 | 600 | 0.5706 | 0.5373 | 0.6857 | 0.6025 | 0.8399 | | 0.3856 | 2.33 | 800 | 0.6303 | 0.6032 | 0.7238 | 0.6580 | 0.8648 | | 0.2558 | 2.91 | 1000 | 0.5644 | 0.6179 | 0.7238 | 0.6667 | 0.8720 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2