Mingsmilet commited on
Commit
4564215
·
verified ·
1 Parent(s): 2ffe410

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-7B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-7B-R1-SFT
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-7B-R1-SFT
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="Mingsmilet/Qwen2.5-7B-R1-SFT", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/1653401183-mingmingai/huggingface/runs/4ua04ok8)
31
+
32
+
33
+ This model was trained with SFT.
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.16.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+
46
+
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 275626774757376.0,
3
+ "train_loss": 1.0209425016954372,
4
+ "train_runtime": 3648.2915,
5
+ "train_samples": 88000,
6
+ "train_samples_per_second": 9.24,
7
+ "train_steps_per_second": 0.144
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c17678bbe43e1ca8708b98472688f5dde6c5c1f50526d8d2cbd2a0bf8678297
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3de61a3702eccb0cf7f0673b3293cf8644fa6719b0e3d3165fb54fc104e543b
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7552d428a712603183692dfa52a45137885d7dac29b4cddc070a43e26ef258
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68c4dfdb4fcdfc9e3ece6c8fffb5b4b3842f8c0cd894ffb0e9cfef620ec0e49a
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|im_end|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 275626774757376.0,
3
+ "train_loss": 1.0209425016954372,
4
+ "train_runtime": 3648.2915,
5
+ "train_samples": 88000,
6
+ "train_samples_per_second": 9.24,
7
+ "train_steps_per_second": 0.144
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,928 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9985761746559089,
5
+ "eval_steps": 100,
6
+ "global_step": 526,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009492168960607499,
13
+ "grad_norm": 6.382084533927167,
14
+ "learning_rate": 2.830188679245283e-06,
15
+ "loss": 1.5552,
16
+ "mean_token_accuracy": 0.6334456590390899,
17
+ "step": 5
18
+ },
19
+ {
20
+ "epoch": 0.018984337921214997,
21
+ "grad_norm": 2.4038523283330995,
22
+ "learning_rate": 5.660377358490566e-06,
23
+ "loss": 1.3914,
24
+ "mean_token_accuracy": 0.6519559993952877,
25
+ "step": 10
26
+ },
27
+ {
28
+ "epoch": 0.028476506881822496,
29
+ "grad_norm": 1.3354890710706353,
30
+ "learning_rate": 8.49056603773585e-06,
31
+ "loss": 1.3131,
32
+ "mean_token_accuracy": 0.6610869096637859,
33
+ "step": 15
34
+ },
35
+ {
36
+ "epoch": 0.037968675842429994,
37
+ "grad_norm": 1.1017917039570355,
38
+ "learning_rate": 1.1320754716981132e-05,
39
+ "loss": 1.2063,
40
+ "mean_token_accuracy": 0.6809012376554828,
41
+ "step": 20
42
+ },
43
+ {
44
+ "epoch": 0.04746084480303749,
45
+ "grad_norm": 0.9879503320797501,
46
+ "learning_rate": 1.4150943396226415e-05,
47
+ "loss": 1.1486,
48
+ "mean_token_accuracy": 0.6918192724443217,
49
+ "step": 25
50
+ },
51
+ {
52
+ "epoch": 0.05695301376364499,
53
+ "grad_norm": 0.8159335394559786,
54
+ "learning_rate": 1.69811320754717e-05,
55
+ "loss": 1.1604,
56
+ "mean_token_accuracy": 0.6889519967175546,
57
+ "step": 30
58
+ },
59
+ {
60
+ "epoch": 0.0664451827242525,
61
+ "grad_norm": 0.7351159553665958,
62
+ "learning_rate": 1.981132075471698e-05,
63
+ "loss": 1.1136,
64
+ "mean_token_accuracy": 0.6980297149741597,
65
+ "step": 35
66
+ },
67
+ {
68
+ "epoch": 0.07593735168485999,
69
+ "grad_norm": 0.8029098841687364,
70
+ "learning_rate": 2.2641509433962265e-05,
71
+ "loss": 1.1006,
72
+ "mean_token_accuracy": 0.7000043453319321,
73
+ "step": 40
74
+ },
75
+ {
76
+ "epoch": 0.0854295206454675,
77
+ "grad_norm": 0.7707051213318692,
78
+ "learning_rate": 2.547169811320755e-05,
79
+ "loss": 1.0935,
80
+ "mean_token_accuracy": 0.7024640797960592,
81
+ "step": 45
82
+ },
83
+ {
84
+ "epoch": 0.09492168960607499,
85
+ "grad_norm": 0.7829819546300452,
86
+ "learning_rate": 2.830188679245283e-05,
87
+ "loss": 1.0914,
88
+ "mean_token_accuracy": 0.701772119443971,
89
+ "step": 50
90
+ },
91
+ {
92
+ "epoch": 0.10441385856668249,
93
+ "grad_norm": 0.8037742734156652,
94
+ "learning_rate": 2.999867659633677e-05,
95
+ "loss": 1.0821,
96
+ "mean_token_accuracy": 0.7028966547668545,
97
+ "step": 55
98
+ },
99
+ {
100
+ "epoch": 0.11390602752728998,
101
+ "grad_norm": 0.719419938154323,
102
+ "learning_rate": 2.998379098682235e-05,
103
+ "loss": 1.0639,
104
+ "mean_token_accuracy": 0.7082780105929181,
105
+ "step": 60
106
+ },
107
+ {
108
+ "epoch": 0.12339819648789749,
109
+ "grad_norm": 0.7279019741711135,
110
+ "learning_rate": 2.9952381983070697e-05,
111
+ "loss": 1.061,
112
+ "mean_token_accuracy": 0.7086445803281343,
113
+ "step": 65
114
+ },
115
+ {
116
+ "epoch": 0.132890365448505,
117
+ "grad_norm": 0.9168076324115938,
118
+ "learning_rate": 2.990448422139995e-05,
119
+ "loss": 1.0706,
120
+ "mean_token_accuracy": 0.706039712175089,
121
+ "step": 70
122
+ },
123
+ {
124
+ "epoch": 0.14238253440911247,
125
+ "grad_norm": 0.6318736197635204,
126
+ "learning_rate": 2.9840150521126656e-05,
127
+ "loss": 1.0556,
128
+ "mean_token_accuracy": 0.7090440166084926,
129
+ "step": 75
130
+ },
131
+ {
132
+ "epoch": 0.15187470336971998,
133
+ "grad_norm": 0.7517171577246983,
134
+ "learning_rate": 2.9759451826319188e-05,
135
+ "loss": 1.0518,
136
+ "mean_token_accuracy": 0.709636223789211,
137
+ "step": 80
138
+ },
139
+ {
140
+ "epoch": 0.16136687233032748,
141
+ "grad_norm": 0.8194879778362485,
142
+ "learning_rate": 2.9662477127564114e-05,
143
+ "loss": 1.061,
144
+ "mean_token_accuracy": 0.7081536390053055,
145
+ "step": 85
146
+ },
147
+ {
148
+ "epoch": 0.170859041290935,
149
+ "grad_norm": 0.7099500456353331,
150
+ "learning_rate": 2.954933336383167e-05,
151
+ "loss": 1.0504,
152
+ "mean_token_accuracy": 0.7099738392414334,
153
+ "step": 90
154
+ },
155
+ {
156
+ "epoch": 0.18035121025154247,
157
+ "grad_norm": 0.885116945350152,
158
+ "learning_rate": 2.9420145304548727e-05,
159
+ "loss": 1.0618,
160
+ "mean_token_accuracy": 0.7073557843749686,
161
+ "step": 95
162
+ },
163
+ {
164
+ "epoch": 0.18984337921214997,
165
+ "grad_norm": 0.7052704259862534,
166
+ "learning_rate": 2.927505541200911e-05,
167
+ "loss": 1.0447,
168
+ "mean_token_accuracy": 0.7107585697424312,
169
+ "step": 100
170
+ },
171
+ {
172
+ "epoch": 0.18984337921214997,
173
+ "eval_loss": 1.048028588294983,
174
+ "eval_mean_token_accuracy": 0.7104562116108591,
175
+ "eval_runtime": 188.174,
176
+ "eval_samples_per_second": 44.958,
177
+ "eval_steps_per_second": 2.811,
178
+ "step": 100
179
+ },
180
+ {
181
+ "epoch": 0.19933554817275748,
182
+ "grad_norm": 0.6662794449059302,
183
+ "learning_rate": 2.9114223684273157e-05,
184
+ "loss": 1.031,
185
+ "mean_token_accuracy": 0.714224491813318,
186
+ "step": 105
187
+ },
188
+ {
189
+ "epoch": 0.20882771713336498,
190
+ "grad_norm": 0.723871912393848,
191
+ "learning_rate": 2.893782747872962e-05,
192
+ "loss": 1.0641,
193
+ "mean_token_accuracy": 0.7066465015390666,
194
+ "step": 110
195
+ },
196
+ {
197
+ "epoch": 0.21831988609397246,
198
+ "grad_norm": 0.6837404594766777,
199
+ "learning_rate": 2.8746061316514636e-05,
200
+ "loss": 1.0325,
201
+ "mean_token_accuracy": 0.7134234564487059,
202
+ "step": 115
203
+ },
204
+ {
205
+ "epoch": 0.22781205505457996,
206
+ "grad_norm": 0.7302473146293046,
207
+ "learning_rate": 2.853913666800324e-05,
208
+ "loss": 1.0413,
209
+ "mean_token_accuracy": 0.711697892158014,
210
+ "step": 120
211
+ },
212
+ {
213
+ "epoch": 0.23730422401518747,
214
+ "grad_norm": 0.6282864756210261,
215
+ "learning_rate": 2.8317281719610195e-05,
216
+ "loss": 1.0232,
217
+ "mean_token_accuracy": 0.7161906910477807,
218
+ "step": 125
219
+ },
220
+ {
221
+ "epoch": 0.24679639297579498,
222
+ "grad_norm": 0.7186936614849424,
223
+ "learning_rate": 2.8080741122157116e-05,
224
+ "loss": 1.0395,
225
+ "mean_token_accuracy": 0.7129813734835235,
226
+ "step": 130
227
+ },
228
+ {
229
+ "epoch": 0.2562885619364025,
230
+ "grad_norm": 0.6699630796093422,
231
+ "learning_rate": 2.7829775721083462e-05,
232
+ "loss": 1.0334,
233
+ "mean_token_accuracy": 0.713805177916302,
234
+ "step": 135
235
+ },
236
+ {
237
+ "epoch": 0.26578073089701,
238
+ "grad_norm": 0.6671508294114585,
239
+ "learning_rate": 2.7564662268798923e-05,
240
+ "loss": 1.0398,
241
+ "mean_token_accuracy": 0.711473895741226,
242
+ "step": 140
243
+ },
244
+ {
245
+ "epoch": 0.2752728998576175,
246
+ "grad_norm": 0.7056353558790489,
247
+ "learning_rate": 2.7285693119494342e-05,
248
+ "loss": 1.0388,
249
+ "mean_token_accuracy": 0.7125332932510399,
250
+ "step": 145
251
+ },
252
+ {
253
+ "epoch": 0.28476506881822494,
254
+ "grad_norm": 0.713539935014783,
255
+ "learning_rate": 2.6993175906747766e-05,
256
+ "loss": 1.0425,
257
+ "mean_token_accuracy": 0.7113191565844058,
258
+ "step": 150
259
+ },
260
+ {
261
+ "epoch": 0.29425723777883245,
262
+ "grad_norm": 0.6506095739220058,
263
+ "learning_rate": 2.6687433204281133e-05,
264
+ "loss": 1.0431,
265
+ "mean_token_accuracy": 0.7111925093298841,
266
+ "step": 155
267
+ },
268
+ {
269
+ "epoch": 0.30374940673943995,
270
+ "grad_norm": 0.6401875745839918,
271
+ "learning_rate": 2.63688021702417e-05,
272
+ "loss": 1.0282,
273
+ "mean_token_accuracy": 0.7144017808774497,
274
+ "step": 160
275
+ },
276
+ {
277
+ "epoch": 0.31324157570004746,
278
+ "grad_norm": 0.7140579977602919,
279
+ "learning_rate": 2.603763417540048e-05,
280
+ "loss": 1.0459,
281
+ "mean_token_accuracy": 0.7098399140003829,
282
+ "step": 165
283
+ },
284
+ {
285
+ "epoch": 0.32273374466065496,
286
+ "grad_norm": 0.6253709705815874,
287
+ "learning_rate": 2.569429441567766e-05,
288
+ "loss": 1.0231,
289
+ "mean_token_accuracy": 0.7159014738186652,
290
+ "step": 170
291
+ },
292
+ {
293
+ "epoch": 0.33222591362126247,
294
+ "grad_norm": 0.6324214284509637,
295
+ "learning_rate": 2.5339161509422392e-05,
296
+ "loss": 1.0197,
297
+ "mean_token_accuracy": 0.7164093742051707,
298
+ "step": 175
299
+ },
300
+ {
301
+ "epoch": 0.34171808258187,
302
+ "grad_norm": 0.6678987876289522,
303
+ "learning_rate": 2.4972627079890876e-05,
304
+ "loss": 0.9976,
305
+ "mean_token_accuracy": 0.7215757004921317,
306
+ "step": 180
307
+ },
308
+ {
309
+ "epoch": 0.3512102515424775,
310
+ "grad_norm": 0.7567846587011824,
311
+ "learning_rate": 2.459509532338337e-05,
312
+ "loss": 1.0362,
313
+ "mean_token_accuracy": 0.7126484349370313,
314
+ "step": 185
315
+ },
316
+ {
317
+ "epoch": 0.36070242050308493,
318
+ "grad_norm": 0.6319910789700267,
319
+ "learning_rate": 2.4206982563516198e-05,
320
+ "loss": 1.0085,
321
+ "mean_token_accuracy": 0.7193452892998586,
322
+ "step": 190
323
+ },
324
+ {
325
+ "epoch": 0.37019458946369244,
326
+ "grad_norm": 0.592121827760772,
327
+ "learning_rate": 2.3808716792120365e-05,
328
+ "loss": 0.9995,
329
+ "mean_token_accuracy": 0.7203226780525329,
330
+ "step": 195
331
+ },
332
+ {
333
+ "epoch": 0.37968675842429994,
334
+ "grad_norm": 0.6491619559468075,
335
+ "learning_rate": 2.3400737197273017e-05,
336
+ "loss": 1.0068,
337
+ "mean_token_accuracy": 0.7198690144033525,
338
+ "step": 200
339
+ },
340
+ {
341
+ "epoch": 0.37968675842429994,
342
+ "eval_loss": 1.016072154045105,
343
+ "eval_mean_token_accuracy": 0.7169056956031188,
344
+ "eval_runtime": 188.2109,
345
+ "eval_samples_per_second": 44.95,
346
+ "eval_steps_per_second": 2.811,
347
+ "step": 200
348
+ },
349
+ {
350
+ "epoch": 0.38917892738490745,
351
+ "grad_norm": 0.5982062591050502,
352
+ "learning_rate": 2.2983493678982263e-05,
353
+ "loss": 1.0178,
354
+ "mean_token_accuracy": 0.7163814283777625,
355
+ "step": 205
356
+ },
357
+ {
358
+ "epoch": 0.39867109634551495,
359
+ "grad_norm": 0.6500756539810862,
360
+ "learning_rate": 2.2557446353059363e-05,
361
+ "loss": 1.0122,
362
+ "mean_token_accuracy": 0.7169991323301304,
363
+ "step": 210
364
+ },
365
+ {
366
+ "epoch": 0.40816326530612246,
367
+ "grad_norm": 0.67216281461341,
368
+ "learning_rate": 2.2123065043725443e-05,
369
+ "loss": 1.0114,
370
+ "mean_token_accuracy": 0.7178278442059701,
371
+ "step": 215
372
+ },
373
+ {
374
+ "epoch": 0.41765543426672996,
375
+ "grad_norm": 0.6091548648271161,
376
+ "learning_rate": 2.1680828765512254e-05,
377
+ "loss": 0.9911,
378
+ "mean_token_accuracy": 0.7221596642604371,
379
+ "step": 220
380
+ },
381
+ {
382
+ "epoch": 0.42714760322733747,
383
+ "grad_norm": 0.6300256337486431,
384
+ "learning_rate": 2.12312251950283e-05,
385
+ "loss": 1.0116,
386
+ "mean_token_accuracy": 0.7184098011056725,
387
+ "step": 225
388
+ },
389
+ {
390
+ "epoch": 0.4366397721879449,
391
+ "grad_norm": 0.6047772843320056,
392
+ "learning_rate": 2.077475013317283e-05,
393
+ "loss": 1.009,
394
+ "mean_token_accuracy": 0.7181628696364624,
395
+ "step": 230
396
+ },
397
+ {
398
+ "epoch": 0.4461319411485524,
399
+ "grad_norm": 0.633329142422912,
400
+ "learning_rate": 2.0311906958390815e-05,
401
+ "loss": 1.014,
402
+ "mean_token_accuracy": 0.7181358407727384,
403
+ "step": 235
404
+ },
405
+ {
406
+ "epoch": 0.45562411010915993,
407
+ "grad_norm": 0.5816601957080884,
408
+ "learning_rate": 1.9843206071571692e-05,
409
+ "loss": 1.0059,
410
+ "mean_token_accuracy": 0.7193718957578646,
411
+ "step": 240
412
+ },
413
+ {
414
+ "epoch": 0.46511627906976744,
415
+ "grad_norm": 0.5698758427376447,
416
+ "learning_rate": 1.936916433320418e-05,
417
+ "loss": 0.9902,
418
+ "mean_token_accuracy": 0.7222839979970095,
419
+ "step": 245
420
+ },
421
+ {
422
+ "epoch": 0.47460844803037494,
423
+ "grad_norm": 0.6194684314147714,
424
+ "learning_rate": 1.8890304493407705e-05,
425
+ "loss": 0.9956,
426
+ "mean_token_accuracy": 0.7217816370116409,
427
+ "step": 250
428
+ },
429
+ {
430
+ "epoch": 0.48410061699098245,
431
+ "grad_norm": 0.5900456478425009,
432
+ "learning_rate": 1.840715461546909e-05,
433
+ "loss": 0.9852,
434
+ "mean_token_accuracy": 0.7235825698249634,
435
+ "step": 255
436
+ },
437
+ {
438
+ "epoch": 0.49359278595158995,
439
+ "grad_norm": 0.5996405920369893,
440
+ "learning_rate": 1.792024749352005e-05,
441
+ "loss": 0.9802,
442
+ "mean_token_accuracy": 0.7251773628246897,
443
+ "step": 260
444
+ },
445
+ {
446
+ "epoch": 0.5030849549121974,
447
+ "grad_norm": 0.627099426962684,
448
+ "learning_rate": 1.7430120064997848e-05,
449
+ "loss": 0.9867,
450
+ "mean_token_accuracy": 0.7237486444295606,
451
+ "step": 265
452
+ },
453
+ {
454
+ "epoch": 0.512577123872805,
455
+ "grad_norm": 0.595354280461353,
456
+ "learning_rate": 1.6937312818536852e-05,
457
+ "loss": 0.9878,
458
+ "mean_token_accuracy": 0.7229575029055708,
459
+ "step": 270
460
+ },
461
+ {
462
+ "epoch": 0.5220692928334124,
463
+ "grad_norm": 0.7034272599240323,
464
+ "learning_rate": 1.644236919794398e-05,
465
+ "loss": 1.0075,
466
+ "mean_token_accuracy": 0.7184976576983118,
467
+ "step": 275
468
+ },
469
+ {
470
+ "epoch": 0.53156146179402,
471
+ "grad_norm": 0.6023946372615683,
472
+ "learning_rate": 1.5945835002915428e-05,
473
+ "loss": 0.988,
474
+ "mean_token_accuracy": 0.723351409706495,
475
+ "step": 280
476
+ },
477
+ {
478
+ "epoch": 0.5410536307546274,
479
+ "grad_norm": 0.5879635470205725,
480
+ "learning_rate": 1.5448257787155316e-05,
481
+ "loss": 1.0071,
482
+ "mean_token_accuracy": 0.7196090507353585,
483
+ "step": 285
484
+ },
485
+ {
486
+ "epoch": 0.550545799715235,
487
+ "grad_norm": 0.5510790369891281,
488
+ "learning_rate": 1.4950186254560195e-05,
489
+ "loss": 0.9504,
490
+ "mean_token_accuracy": 0.7309219942793238,
491
+ "step": 290
492
+ },
493
+ {
494
+ "epoch": 0.5600379686758424,
495
+ "grad_norm": 0.5479437822508071,
496
+ "learning_rate": 1.4452169654135116e-05,
497
+ "loss": 0.991,
498
+ "mean_token_accuracy": 0.7227064638424688,
499
+ "step": 295
500
+ },
501
+ {
502
+ "epoch": 0.5695301376364499,
503
+ "grad_norm": 0.538661848645154,
504
+ "learning_rate": 1.3954757174308611e-05,
505
+ "loss": 0.9982,
506
+ "mean_token_accuracy": 0.7204644706262047,
507
+ "step": 300
508
+ },
509
+ {
510
+ "epoch": 0.5695301376364499,
511
+ "eval_loss": 0.9927210211753845,
512
+ "eval_mean_token_accuracy": 0.7218378547164851,
513
+ "eval_runtime": 188.261,
514
+ "eval_samples_per_second": 44.938,
515
+ "eval_steps_per_second": 2.81,
516
+ "step": 300
517
+ },
518
+ {
519
+ "epoch": 0.5790223065970574,
520
+ "grad_norm": 0.5351158398440641,
521
+ "learning_rate": 1.3458497337314464e-05,
522
+ "loss": 0.9872,
523
+ "mean_token_accuracy": 0.7229412089112974,
524
+ "step": 305
525
+ },
526
+ {
527
+ "epoch": 0.5885144755576649,
528
+ "grad_norm": 0.551234414499353,
529
+ "learning_rate": 1.2963937394308139e-05,
530
+ "loss": 0.9844,
531
+ "mean_token_accuracy": 0.7240711314491671,
532
+ "step": 310
533
+ },
534
+ {
535
+ "epoch": 0.5980066445182725,
536
+ "grad_norm": 0.5663879687131853,
537
+ "learning_rate": 1.247162272188488e-05,
538
+ "loss": 1.0137,
539
+ "mean_token_accuracy": 0.7177027016634137,
540
+ "step": 315
541
+ },
542
+ {
543
+ "epoch": 0.6074988134788799,
544
+ "grad_norm": 0.5353212240764764,
545
+ "learning_rate": 1.1982096220665e-05,
546
+ "loss": 1.004,
547
+ "mean_token_accuracy": 0.7197887845300913,
548
+ "step": 320
549
+ },
550
+ {
551
+ "epoch": 0.6169909824394875,
552
+ "grad_norm": 0.583630600668319,
553
+ "learning_rate": 1.1495897716609504e-05,
554
+ "loss": 0.9873,
555
+ "mean_token_accuracy": 0.722715737983074,
556
+ "step": 325
557
+ },
558
+ {
559
+ "epoch": 0.6264831514000949,
560
+ "grad_norm": 0.5627383649758397,
561
+ "learning_rate": 1.101356336572639e-05,
562
+ "loss": 0.9758,
563
+ "mean_token_accuracy": 0.7256538668748826,
564
+ "step": 330
565
+ },
566
+ {
567
+ "epoch": 0.6359753203607024,
568
+ "grad_norm": 0.5910628365424991,
569
+ "learning_rate": 1.0535625062823913e-05,
570
+ "loss": 0.9814,
571
+ "mean_token_accuracy": 0.7250735323254608,
572
+ "step": 335
573
+ },
574
+ {
575
+ "epoch": 0.6454674893213099,
576
+ "grad_norm": 0.5676509472619453,
577
+ "learning_rate": 1.006260985496291e-05,
578
+ "loss": 0.9679,
579
+ "mean_token_accuracy": 0.7274865177290415,
580
+ "step": 340
581
+ },
582
+ {
583
+ "epoch": 0.6549596582819174,
584
+ "grad_norm": 0.5417197121930121,
585
+ "learning_rate": 9.595039360255027e-06,
586
+ "loss": 0.9891,
587
+ "mean_token_accuracy": 0.721159575635722,
588
+ "step": 345
589
+ },
590
+ {
591
+ "epoch": 0.6644518272425249,
592
+ "grad_norm": 0.5418465706657506,
593
+ "learning_rate": 9.133429192647661e-06,
594
+ "loss": 0.9877,
595
+ "mean_token_accuracy": 0.723318498917802,
596
+ "step": 350
597
+ },
598
+ {
599
+ "epoch": 0.6739439962031324,
600
+ "grad_norm": 0.5358459281845342,
601
+ "learning_rate": 8.678288393330054e-06,
602
+ "loss": 0.9929,
603
+ "mean_token_accuracy": 0.7210306617807193,
604
+ "step": 355
605
+ },
606
+ {
607
+ "epoch": 0.68343616516374,
608
+ "grad_norm": 0.5227319454091675,
609
+ "learning_rate": 8.230118869387477e-06,
610
+ "loss": 0.9795,
611
+ "mean_token_accuracy": 0.7254460407787091,
612
+ "step": 360
613
+ },
614
+ {
615
+ "epoch": 0.6929283341243474,
616
+ "grad_norm": 0.5322267392288975,
617
+ "learning_rate": 7.789414840322585e-06,
618
+ "loss": 0.9847,
619
+ "mean_token_accuracy": 0.7235376583740499,
620
+ "step": 365
621
+ },
622
+ {
623
+ "epoch": 0.702420503084955,
624
+ "grad_norm": 0.5223012851619547,
625
+ "learning_rate": 7.356662293054208e-06,
626
+ "loss": 0.966,
627
+ "mean_token_accuracy": 0.7278847554342741,
628
+ "step": 370
629
+ },
630
+ {
631
+ "epoch": 0.7119126720455624,
632
+ "grad_norm": 0.5155576369666807,
633
+ "learning_rate": 6.932338445994688e-06,
634
+ "loss": 0.9692,
635
+ "mean_token_accuracy": 0.726704847484917,
636
+ "step": 375
637
+ },
638
+ {
639
+ "epoch": 0.7214048410061699,
640
+ "grad_norm": 0.5036185424846276,
641
+ "learning_rate": 6.5169112227966985e-06,
642
+ "loss": 0.9865,
643
+ "mean_token_accuracy": 0.7224871125460137,
644
+ "step": 380
645
+ },
646
+ {
647
+ "epoch": 0.7308970099667774,
648
+ "grad_norm": 0.5257978275446427,
649
+ "learning_rate": 6.1108387363497966e-06,
650
+ "loss": 0.9796,
651
+ "mean_token_accuracy": 0.723099248470522,
652
+ "step": 385
653
+ },
654
+ {
655
+ "epoch": 0.7403891789273849,
656
+ "grad_norm": 0.5418564336337571,
657
+ "learning_rate": 5.7145687835959294e-06,
658
+ "loss": 0.9684,
659
+ "mean_token_accuracy": 0.7269886124626503,
660
+ "step": 390
661
+ },
662
+ {
663
+ "epoch": 0.7498813478879924,
664
+ "grad_norm": 0.5231604557981293,
665
+ "learning_rate": 5.328538351720738e-06,
666
+ "loss": 0.9889,
667
+ "mean_token_accuracy": 0.7233975946116854,
668
+ "step": 395
669
+ },
670
+ {
671
+ "epoch": 0.7593735168485999,
672
+ "grad_norm": 0.5208898465104785,
673
+ "learning_rate": 4.95317313626544e-06,
674
+ "loss": 0.9832,
675
+ "mean_token_accuracy": 0.7237090601111318,
676
+ "step": 400
677
+ },
678
+ {
679
+ "epoch": 0.7593735168485999,
680
+ "eval_loss": 0.9769607186317444,
681
+ "eval_mean_token_accuracy": 0.725058498177693,
682
+ "eval_runtime": 188.3893,
683
+ "eval_samples_per_second": 44.907,
684
+ "eval_steps_per_second": 2.808,
685
+ "step": 400
686
+ },
687
+ {
688
+ "epoch": 0.7688656858092074,
689
+ "grad_norm": 0.5040660800094122,
690
+ "learning_rate": 4.588887071690491e-06,
691
+ "loss": 0.974,
692
+ "mean_token_accuracy": 0.7257032089059805,
693
+ "step": 405
694
+ },
695
+ {
696
+ "epoch": 0.7783578547698149,
697
+ "grad_norm": 0.5161820626985851,
698
+ "learning_rate": 4.236081874908894e-06,
699
+ "loss": 0.9721,
700
+ "mean_token_accuracy": 0.7266561050966363,
701
+ "step": 410
702
+ },
703
+ {
704
+ "epoch": 0.7878500237304225,
705
+ "grad_norm": 0.5063329607764222,
706
+ "learning_rate": 3.895146602292322e-06,
707
+ "loss": 0.9915,
708
+ "mean_token_accuracy": 0.721969042013088,
709
+ "step": 415
710
+ },
711
+ {
712
+ "epoch": 0.7973421926910299,
713
+ "grad_norm": 0.5281346072920926,
714
+ "learning_rate": 3.5664572206387453e-06,
715
+ "loss": 0.9705,
716
+ "mean_token_accuracy": 0.7265926288123876,
717
+ "step": 420
718
+ },
719
+ {
720
+ "epoch": 0.8068343616516374,
721
+ "grad_norm": 0.5250034855647077,
722
+ "learning_rate": 3.250376192574585e-06,
723
+ "loss": 0.9578,
724
+ "mean_token_accuracy": 0.7290626104519637,
725
+ "step": 425
726
+ },
727
+ {
728
+ "epoch": 0.8163265306122449,
729
+ "grad_norm": 0.49831409290381057,
730
+ "learning_rate": 2.94725207684856e-06,
731
+ "loss": 0.975,
732
+ "mean_token_accuracy": 0.7260714077768973,
733
+ "step": 430
734
+ },
735
+ {
736
+ "epoch": 0.8258186995728524,
737
+ "grad_norm": 0.5008570434545507,
738
+ "learning_rate": 2.657419143958137e-06,
739
+ "loss": 0.9785,
740
+ "mean_token_accuracy": 0.7245489166600709,
741
+ "step": 435
742
+ },
743
+ {
744
+ "epoch": 0.8353108685334599,
745
+ "grad_norm": 0.499241785256133,
746
+ "learning_rate": 2.38119700753228e-06,
747
+ "loss": 0.9578,
748
+ "mean_token_accuracy": 0.7287562205862572,
749
+ "step": 440
750
+ },
751
+ {
752
+ "epoch": 0.8448030374940674,
753
+ "grad_norm": 0.4969273882911778,
754
+ "learning_rate": 2.1188902718771654e-06,
755
+ "loss": 0.9723,
756
+ "mean_token_accuracy": 0.7251241120989145,
757
+ "step": 445
758
+ },
759
+ {
760
+ "epoch": 0.8542952064546749,
761
+ "grad_norm": 0.5124547544001624,
762
+ "learning_rate": 1.870788196073348e-06,
763
+ "loss": 0.9686,
764
+ "mean_token_accuracy": 0.7279498396740951,
765
+ "step": 450
766
+ },
767
+ {
768
+ "epoch": 0.8637873754152824,
769
+ "grad_norm": 0.4902608341477827,
770
+ "learning_rate": 1.6371643749950034e-06,
771
+ "loss": 0.9526,
772
+ "mean_token_accuracy": 0.7303064836501066,
773
+ "step": 455
774
+ },
775
+ {
776
+ "epoch": 0.8732795443758898,
777
+ "grad_norm": 0.4890903954488522,
778
+ "learning_rate": 1.4182764376028007e-06,
779
+ "loss": 0.9655,
780
+ "mean_token_accuracy": 0.7276476069135862,
781
+ "step": 460
782
+ },
783
+ {
784
+ "epoch": 0.8827717133364974,
785
+ "grad_norm": 0.49995400150577757,
786
+ "learning_rate": 1.2143657628432675e-06,
787
+ "loss": 0.9553,
788
+ "mean_token_accuracy": 0.7299626887589745,
789
+ "step": 465
790
+ },
791
+ {
792
+ "epoch": 0.8922638822971048,
793
+ "grad_norm": 0.5001903393918901,
794
+ "learning_rate": 1.025657213467836e-06,
795
+ "loss": 0.9706,
796
+ "mean_token_accuracy": 0.7268998952970227,
797
+ "step": 470
798
+ },
799
+ {
800
+ "epoch": 0.9017560512577124,
801
+ "grad_norm": 0.5023213213383173,
802
+ "learning_rate": 8.523588880651739e-07,
803
+ "loss": 0.9762,
804
+ "mean_token_accuracy": 0.7243987187278682,
805
+ "step": 475
806
+ },
807
+ {
808
+ "epoch": 0.9112482202183199,
809
+ "grad_norm": 0.48664338068261653,
810
+ "learning_rate": 6.946618915802083e-07,
811
+ "loss": 0.9648,
812
+ "mean_token_accuracy": 0.7273781984213099,
813
+ "step": 480
814
+ },
815
+ {
816
+ "epoch": 0.9207403891789274,
817
+ "grad_norm": 0.4724859910475711,
818
+ "learning_rate": 5.527401245728963e-07,
819
+ "loss": 0.9495,
820
+ "mean_token_accuracy": 0.7314832008821588,
821
+ "step": 485
822
+ },
823
+ {
824
+ "epoch": 0.9302325581395349,
825
+ "grad_norm": 0.489734009625606,
826
+ "learning_rate": 4.267500914491812e-07,
827
+ "loss": 0.9767,
828
+ "mean_token_accuracy": 0.7242647393634309,
829
+ "step": 490
830
+ },
831
+ {
832
+ "epoch": 0.9397247271001424,
833
+ "grad_norm": 0.4841609096900709,
834
+ "learning_rate": 3.1683072787554614e-07,
835
+ "loss": 0.9772,
836
+ "mean_token_accuracy": 0.7250692813747994,
837
+ "step": 495
838
+ },
839
+ {
840
+ "epoch": 0.9492168960607499,
841
+ "grad_norm": 0.47079883155833574,
842
+ "learning_rate": 2.2310324756755096e-07,
843
+ "loss": 0.9505,
844
+ "mean_token_accuracy": 0.7317554978214195,
845
+ "step": 500
846
+ },
847
+ {
848
+ "epoch": 0.9492168960607499,
849
+ "eval_loss": 0.9712523818016052,
850
+ "eval_mean_token_accuracy": 0.7263223549450385,
851
+ "eval_runtime": 188.5521,
852
+ "eval_samples_per_second": 44.868,
853
+ "eval_steps_per_second": 2.806,
854
+ "step": 500
855
+ },
856
+ {
857
+ "epoch": 0.9587090650213573,
858
+ "grad_norm": 0.4862636180575128,
859
+ "learning_rate": 1.4567100862124261e-07,
860
+ "loss": 0.9552,
861
+ "mean_token_accuracy": 0.7289664229991631,
862
+ "step": 505
863
+ },
864
+ {
865
+ "epoch": 0.9682012339819649,
866
+ "grad_norm": 0.49399931350845777,
867
+ "learning_rate": 8.461939953489484e-08,
868
+ "loss": 0.9881,
869
+ "mean_token_accuracy": 0.7226353458405045,
870
+ "step": 510
871
+ },
872
+ {
873
+ "epoch": 0.9776934029425723,
874
+ "grad_norm": 0.510950230610024,
875
+ "learning_rate": 4.0015745046725336e-08,
876
+ "loss": 0.967,
877
+ "mean_token_accuracy": 0.7275112007297125,
878
+ "step": 515
879
+ },
880
+ {
881
+ "epoch": 0.9871855719031799,
882
+ "grad_norm": 0.48706184867233865,
883
+ "learning_rate": 1.1909231892468508e-08,
884
+ "loss": 0.9641,
885
+ "mean_token_accuracy": 0.7276599577681944,
886
+ "step": 520
887
+ },
888
+ {
889
+ "epoch": 0.9966777408637874,
890
+ "grad_norm": 0.48013249759710047,
891
+ "learning_rate": 3.3085456463188836e-10,
892
+ "loss": 0.9715,
893
+ "mean_token_accuracy": 0.7266395059769233,
894
+ "step": 525
895
+ },
896
+ {
897
+ "epoch": 0.9985761746559089,
898
+ "mean_token_accuracy": 0.7196164559476252,
899
+ "step": 526,
900
+ "total_flos": 275626774757376.0,
901
+ "train_loss": 1.0209425016954372,
902
+ "train_runtime": 3648.2915,
903
+ "train_samples_per_second": 9.24,
904
+ "train_steps_per_second": 0.144
905
+ }
906
+ ],
907
+ "logging_steps": 5,
908
+ "max_steps": 526,
909
+ "num_input_tokens_seen": 0,
910
+ "num_train_epochs": 1,
911
+ "save_steps": 500,
912
+ "stateful_callbacks": {
913
+ "TrainerControl": {
914
+ "args": {
915
+ "should_epoch_stop": false,
916
+ "should_evaluate": false,
917
+ "should_log": false,
918
+ "should_save": false,
919
+ "should_training_stop": false
920
+ },
921
+ "attributes": {}
922
+ }
923
+ },
924
+ "total_flos": 275626774757376.0,
925
+ "train_batch_size": 2,
926
+ "trial_name": null,
927
+ "trial_params": null
928
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0632228308d3584b106a7be96e775dce568ff7f744c3b18ee498792fe696ba47
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff