File size: 2,834 Bytes
5aaa6af
942b240
 
5aaa6af
 
 
 
 
 
942b240
 
 
 
5aaa6af
d2a0233
5aaa6af
942b240
5aaa6af
942b240
5aaa6af
942b240
5aaa6af
942b240
5aaa6af
 
 
 
 
 
 
 
 
 
 
 
 
942b240
5aaa6af
 
 
 
 
 
942b240
5aaa6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942b240
 
5aaa6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942b240
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: Mihaiii/Bulbasaur
license: mit
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- gte
- mteb
datasets:
- Mihaiii/qa-assistant
---
# Venusaur

This is a distill of [Bulbasaur](https://huggingface.co/Mihaiii/Bulbasaur) using [qa-assistant](https://huggingface.co/datasets/Mihaiii/qa-assistant).

## Intended purpose

<span style="color:blue">This model is designed for use in semantic-autocomplete ([click here for demo](https://mihaiii.github.io/semantic-autocomplete/)).</span>

## Usage (Sentence-Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('Mihaiii/Venusaur')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny))
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('Mihaiii/Venusaur')
model = AutoModel.from_pretrained('Mihaiii/Venusaur')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```

### Limitation (same as [gte-small](https://huggingface.co/thenlper/gte-small))
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.