Upload 5 files
Browse files- args (1).json +362 -0
- configuration_aimv2.py +63 -0
- generation_config.json +1 -1
- modeling_aimv2.py +198 -0
- modeling_ovis.py +590 -0
args (1).json
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "AIDC-AI/Ovis2-4B",
|
3 |
+
"model_type": "ovis1_6",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"local_repo_path": null,
|
12 |
+
"template": "ovis1_6",
|
13 |
+
"system": null,
|
14 |
+
"max_length": 2048,
|
15 |
+
"truncation_strategy": "left",
|
16 |
+
"max_pixels": null,
|
17 |
+
"tools_prompt": "react_en",
|
18 |
+
"norm_bbox": null,
|
19 |
+
"padding_side": "right",
|
20 |
+
"loss_scale": "last_round",
|
21 |
+
"sequence_parallel_size": 1,
|
22 |
+
"use_chat_template": true,
|
23 |
+
"template_backend": "swift",
|
24 |
+
"dataset": [
|
25 |
+
"Mihaiii/SROIE_2019_text_recognition-other-cols-5"
|
26 |
+
],
|
27 |
+
"val_dataset": [],
|
28 |
+
"split_dataset_ratio": 0.01,
|
29 |
+
"data_seed": 42,
|
30 |
+
"dataset_num_proc": 4,
|
31 |
+
"streaming": false,
|
32 |
+
"enable_cache": false,
|
33 |
+
"download_mode": "reuse_dataset_if_exists",
|
34 |
+
"columns": {},
|
35 |
+
"strict": false,
|
36 |
+
"remove_unused_columns": false,
|
37 |
+
"model_name": [
|
38 |
+
null,
|
39 |
+
null
|
40 |
+
],
|
41 |
+
"model_author": [
|
42 |
+
null,
|
43 |
+
null
|
44 |
+
],
|
45 |
+
"custom_dataset_info": [],
|
46 |
+
"quant_method": null,
|
47 |
+
"quant_bits": null,
|
48 |
+
"hqq_axis": null,
|
49 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
50 |
+
"bnb_4bit_quant_type": "nf4",
|
51 |
+
"bnb_4bit_use_double_quant": true,
|
52 |
+
"bnb_4bit_quant_storage": null,
|
53 |
+
"max_new_tokens": 64,
|
54 |
+
"temperature": 0.9,
|
55 |
+
"top_k": null,
|
56 |
+
"top_p": null,
|
57 |
+
"repetition_penalty": null,
|
58 |
+
"num_beams": 1,
|
59 |
+
"stream": false,
|
60 |
+
"stop_words": [],
|
61 |
+
"logprobs": false,
|
62 |
+
"top_logprobs": null,
|
63 |
+
"ckpt_dir": null,
|
64 |
+
"load_dataset_config": null,
|
65 |
+
"lora_modules": [],
|
66 |
+
"tuner_backend": "peft",
|
67 |
+
"train_type": "lora",
|
68 |
+
"adapters": [],
|
69 |
+
"seed": 42,
|
70 |
+
"model_kwargs": {},
|
71 |
+
"load_args": true,
|
72 |
+
"load_data_args": false,
|
73 |
+
"use_hf": true,
|
74 |
+
"hub_token": null,
|
75 |
+
"custom_register_path": [],
|
76 |
+
"ignore_args_error": false,
|
77 |
+
"use_swift_lora": false,
|
78 |
+
"output_dir": "/workspace/output/v39-20250215-125538",
|
79 |
+
"overwrite_output_dir": false,
|
80 |
+
"do_train": false,
|
81 |
+
"do_eval": false,
|
82 |
+
"do_predict": false,
|
83 |
+
"eval_strategy": "steps",
|
84 |
+
"prediction_loss_only": false,
|
85 |
+
"per_device_train_batch_size": 4,
|
86 |
+
"per_device_eval_batch_size": 4,
|
87 |
+
"per_gpu_train_batch_size": null,
|
88 |
+
"per_gpu_eval_batch_size": null,
|
89 |
+
"gradient_accumulation_steps": 1,
|
90 |
+
"eval_accumulation_steps": null,
|
91 |
+
"eval_delay": 0,
|
92 |
+
"torch_empty_cache_steps": null,
|
93 |
+
"learning_rate": 1e-05,
|
94 |
+
"weight_decay": 0.1,
|
95 |
+
"adam_beta1": 0.9,
|
96 |
+
"adam_beta2": 0.999,
|
97 |
+
"adam_epsilon": 1e-08,
|
98 |
+
"max_grad_norm": 1.0,
|
99 |
+
"num_train_epochs": 1.0,
|
100 |
+
"max_steps": -1,
|
101 |
+
"lr_scheduler_type": "cosine",
|
102 |
+
"lr_scheduler_kwargs": null,
|
103 |
+
"warmup_ratio": 0.05,
|
104 |
+
"warmup_steps": 0,
|
105 |
+
"log_level": "passive",
|
106 |
+
"log_level_replica": "warning",
|
107 |
+
"log_on_each_node": true,
|
108 |
+
"logging_dir": "/workspace/output/v39-20250215-125538/runs",
|
109 |
+
"logging_strategy": "steps",
|
110 |
+
"logging_first_step": true,
|
111 |
+
"logging_steps": 5,
|
112 |
+
"logging_nan_inf_filter": true,
|
113 |
+
"save_strategy": "steps",
|
114 |
+
"save_steps": 250.0,
|
115 |
+
"save_total_limit": 2,
|
116 |
+
"save_safetensors": true,
|
117 |
+
"save_on_each_node": false,
|
118 |
+
"save_only_model": false,
|
119 |
+
"restore_callback_states_from_checkpoint": false,
|
120 |
+
"no_cuda": false,
|
121 |
+
"use_cpu": false,
|
122 |
+
"use_mps_device": false,
|
123 |
+
"jit_mode_eval": false,
|
124 |
+
"use_ipex": false,
|
125 |
+
"bf16": true,
|
126 |
+
"fp16": false,
|
127 |
+
"fp16_opt_level": "O1",
|
128 |
+
"half_precision_backend": "auto",
|
129 |
+
"bf16_full_eval": false,
|
130 |
+
"fp16_full_eval": false,
|
131 |
+
"tf32": null,
|
132 |
+
"local_rank": -1,
|
133 |
+
"ddp_backend": null,
|
134 |
+
"tpu_num_cores": null,
|
135 |
+
"tpu_metrics_debug": false,
|
136 |
+
"debug": null,
|
137 |
+
"dataloader_drop_last": false,
|
138 |
+
"eval_steps": 50.0,
|
139 |
+
"dataloader_num_workers": 4,
|
140 |
+
"dataloader_prefetch_factor": null,
|
141 |
+
"past_index": -1,
|
142 |
+
"run_name": null,
|
143 |
+
"disable_tqdm": null,
|
144 |
+
"label_names": null,
|
145 |
+
"load_best_model_at_end": false,
|
146 |
+
"metric_for_best_model": null,
|
147 |
+
"greater_is_better": null,
|
148 |
+
"ignore_data_skip": false,
|
149 |
+
"fsdp": "",
|
150 |
+
"fsdp_min_num_params": 0,
|
151 |
+
"fsdp_config": null,
|
152 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
153 |
+
"accelerator_config": {
|
154 |
+
"dispatch_batches": false
|
155 |
+
},
|
156 |
+
"deepspeed": null,
|
157 |
+
"label_smoothing_factor": 0.0,
|
158 |
+
"optim": "adamw_torch",
|
159 |
+
"optim_args": null,
|
160 |
+
"adafactor": false,
|
161 |
+
"group_by_length": false,
|
162 |
+
"length_column_name": "length",
|
163 |
+
"report_to": [
|
164 |
+
"tensorboard"
|
165 |
+
],
|
166 |
+
"ddp_find_unused_parameters": null,
|
167 |
+
"ddp_bucket_cap_mb": null,
|
168 |
+
"ddp_broadcast_buffers": null,
|
169 |
+
"dataloader_pin_memory": true,
|
170 |
+
"dataloader_persistent_workers": false,
|
171 |
+
"skip_memory_metrics": true,
|
172 |
+
"use_legacy_prediction_loop": false,
|
173 |
+
"push_to_hub": false,
|
174 |
+
"resume_from_checkpoint": null,
|
175 |
+
"hub_model_id": null,
|
176 |
+
"hub_strategy": "every_save",
|
177 |
+
"hub_private_repo": null,
|
178 |
+
"hub_always_push": false,
|
179 |
+
"gradient_checkpointing": true,
|
180 |
+
"gradient_checkpointing_kwargs": null,
|
181 |
+
"include_inputs_for_metrics": false,
|
182 |
+
"include_for_metrics": [],
|
183 |
+
"eval_do_concat_batches": true,
|
184 |
+
"fp16_backend": "auto",
|
185 |
+
"evaluation_strategy": "steps",
|
186 |
+
"push_to_hub_model_id": null,
|
187 |
+
"push_to_hub_organization": null,
|
188 |
+
"push_to_hub_token": null,
|
189 |
+
"mp_parameters": "",
|
190 |
+
"auto_find_batch_size": false,
|
191 |
+
"full_determinism": false,
|
192 |
+
"torchdynamo": null,
|
193 |
+
"ray_scope": "last",
|
194 |
+
"ddp_timeout": 1800,
|
195 |
+
"torch_compile": false,
|
196 |
+
"torch_compile_backend": null,
|
197 |
+
"torch_compile_mode": null,
|
198 |
+
"dispatch_batches": null,
|
199 |
+
"split_batches": null,
|
200 |
+
"include_tokens_per_second": false,
|
201 |
+
"include_num_input_tokens_seen": false,
|
202 |
+
"neftune_noise_alpha": null,
|
203 |
+
"optim_target_modules": null,
|
204 |
+
"batch_eval_metrics": false,
|
205 |
+
"eval_on_start": false,
|
206 |
+
"use_liger_kernel": false,
|
207 |
+
"eval_use_gather_object": false,
|
208 |
+
"average_tokens_across_devices": false,
|
209 |
+
"sortish_sampler": false,
|
210 |
+
"predict_with_generate": false,
|
211 |
+
"generation_max_length": null,
|
212 |
+
"generation_num_beams": null,
|
213 |
+
"generation_config": null,
|
214 |
+
"freeze_parameters": [
|
215 |
+
"visual_tokenizer"
|
216 |
+
],
|
217 |
+
"freeze_parameters_ratio": 0.0,
|
218 |
+
"trainable_parameters": [],
|
219 |
+
"freeze_llm": false,
|
220 |
+
"freeze_vit": true,
|
221 |
+
"freeze_aligner": true,
|
222 |
+
"target_modules": [
|
223 |
+
"all-linear"
|
224 |
+
],
|
225 |
+
"target_regex": null,
|
226 |
+
"modules_to_save": [],
|
227 |
+
"lora_rank": 8,
|
228 |
+
"lora_alpha": 32,
|
229 |
+
"lora_dropout": 0.05,
|
230 |
+
"lora_bias": "none",
|
231 |
+
"lora_dtype": null,
|
232 |
+
"lorap_lr_ratio": null,
|
233 |
+
"use_rslora": false,
|
234 |
+
"use_dora": false,
|
235 |
+
"lora_ga_batch_size": 2,
|
236 |
+
"lora_ga_iters": 2,
|
237 |
+
"lora_ga_max_length": 1024,
|
238 |
+
"lora_ga_direction": "ArB2r",
|
239 |
+
"lora_ga_scale": "stable",
|
240 |
+
"lora_ga_stable_gamma": 16,
|
241 |
+
"init_weights": true,
|
242 |
+
"fourier_n_frequency": 2000,
|
243 |
+
"fourier_scaling": 300.0,
|
244 |
+
"boft_block_size": 4,
|
245 |
+
"boft_block_num": 0,
|
246 |
+
"boft_n_butterfly_factor": 1,
|
247 |
+
"boft_dropout": 0.0,
|
248 |
+
"vera_rank": 256,
|
249 |
+
"vera_projection_prng_key": 0,
|
250 |
+
"vera_dropout": 0.0,
|
251 |
+
"vera_d_initial": 0.1,
|
252 |
+
"adapter_act": "gelu",
|
253 |
+
"adapter_length": 128,
|
254 |
+
"use_galore": false,
|
255 |
+
"galore_target_modules": null,
|
256 |
+
"galore_rank": 128,
|
257 |
+
"galore_update_proj_gap": 50,
|
258 |
+
"galore_scale": 1.0,
|
259 |
+
"galore_proj_type": "std",
|
260 |
+
"galore_optim_per_parameter": false,
|
261 |
+
"galore_with_embedding": false,
|
262 |
+
"galore_quantization": false,
|
263 |
+
"galore_proj_quant": false,
|
264 |
+
"galore_proj_bits": 4,
|
265 |
+
"galore_proj_group_size": 256,
|
266 |
+
"galore_cos_threshold": 0.4,
|
267 |
+
"galore_gamma_proj": 2,
|
268 |
+
"galore_queue_size": 5,
|
269 |
+
"adalora_target_r": 8,
|
270 |
+
"adalora_init_r": 12,
|
271 |
+
"adalora_tinit": 0,
|
272 |
+
"adalora_tfinal": 0,
|
273 |
+
"adalora_deltaT": 1,
|
274 |
+
"adalora_beta1": 0.85,
|
275 |
+
"adalora_beta2": 0.85,
|
276 |
+
"adalora_orth_reg_weight": 0.5,
|
277 |
+
"llamapro_num_new_blocks": 4,
|
278 |
+
"llamapro_num_groups": null,
|
279 |
+
"lisa_activated_layers": 0,
|
280 |
+
"lisa_step_interval": 20,
|
281 |
+
"reft_layer_key": null,
|
282 |
+
"reft_layers": null,
|
283 |
+
"reft_rank": 4,
|
284 |
+
"reft_intervention_type": "LoreftIntervention",
|
285 |
+
"reft_args": null,
|
286 |
+
"use_liger": false,
|
287 |
+
"model_layer_cls_name": null,
|
288 |
+
"metric_warmup_step": 0,
|
289 |
+
"fsdp_num": 1,
|
290 |
+
"acc_steps": 1,
|
291 |
+
"add_version": true,
|
292 |
+
"resume_only_model": false,
|
293 |
+
"check_model": true,
|
294 |
+
"create_checkpoint_symlink": false,
|
295 |
+
"packing": false,
|
296 |
+
"lazy_tokenize": true,
|
297 |
+
"external_plugins": [],
|
298 |
+
"loss_type": null,
|
299 |
+
"optimizer": null,
|
300 |
+
"metric": null,
|
301 |
+
"acc_strategy": "token",
|
302 |
+
"reward_model": null,
|
303 |
+
"reward_adapters": [],
|
304 |
+
"reward_model_type": null,
|
305 |
+
"reward_model_revision": null,
|
306 |
+
"num_ppo_epochs": 4,
|
307 |
+
"whiten_rewards": false,
|
308 |
+
"kl_coef": 0.05,
|
309 |
+
"cliprange": 0.2,
|
310 |
+
"vf_coef": 0.1,
|
311 |
+
"cliprange_value": 0.2,
|
312 |
+
"gamma": 1.0,
|
313 |
+
"lam": 0.95,
|
314 |
+
"num_mini_batches": 1,
|
315 |
+
"local_rollout_forward_batch_size": 64,
|
316 |
+
"num_sample_generations": 10,
|
317 |
+
"response_length": 512,
|
318 |
+
"missing_eos_penalty": null,
|
319 |
+
"vllm_max_num_seqs": 256,
|
320 |
+
"vllm_enforce_eager": false,
|
321 |
+
"vllm_limit_mm_per_prompt": null,
|
322 |
+
"vllm_enable_prefix_caching": true,
|
323 |
+
"cosine_min_len_value_wrong": 0.0,
|
324 |
+
"cosine_max_len_value_wrong": -0.5,
|
325 |
+
"cosine_min_len_value_correct": 1.0,
|
326 |
+
"cosine_max_len_value_correct": 0.5,
|
327 |
+
"cosine_max_len": null,
|
328 |
+
"repetition_n_grams": 3,
|
329 |
+
"repetition_max_penalty": -1.0,
|
330 |
+
"num_generations": 4,
|
331 |
+
"max_completion_length": 1024,
|
332 |
+
"ds3_gather_for_generation": true,
|
333 |
+
"reward_funcs": [
|
334 |
+
"db_accuracy"
|
335 |
+
],
|
336 |
+
"reward_weights": null,
|
337 |
+
"log_completions": false,
|
338 |
+
"use_vllm": false,
|
339 |
+
"vllm_device": "auto",
|
340 |
+
"vllm_gpu_memory_utilization": 0.9,
|
341 |
+
"vllm_max_model_len": null,
|
342 |
+
"rlhf_type": "grpo",
|
343 |
+
"ref_model": null,
|
344 |
+
"ref_model_type": null,
|
345 |
+
"ref_model_revision": null,
|
346 |
+
"beta": 0.04,
|
347 |
+
"label_smoothing": 0,
|
348 |
+
"rpo_alpha": 1.0,
|
349 |
+
"cpo_alpha": 1.0,
|
350 |
+
"simpo_gamma": 1,
|
351 |
+
"desirable_weight": 1.0,
|
352 |
+
"undesirable_weight": 1.0,
|
353 |
+
"rank": -1,
|
354 |
+
"global_world_size": 1,
|
355 |
+
"local_world_size": 1,
|
356 |
+
"model_suffix": "Ovis2-4B",
|
357 |
+
"model_info": "ModelInfo(model_type='ovis1_6', model_dir='/root/.cache/huggingface/hub/models--AIDC-AI--Ovis2-4B/snapshots/5e1d0dbd5f3ba42246de46d03bb4de70224dbafd', torch_dtype=torch.bfloat16, max_model_len=32768, quant_method=None, quant_bits=None, config=None, task_type='causal_lm', num_labels=None)",
|
358 |
+
"model_meta": "ModelMeta(model_type='ovis1_6', model_groups=[ModelGroup(models=[Model(ms_model_id='AIDC-AI/Ovis1.6-Gemma2-9B', hf_model_id='AIDC-AI/Ovis1.6-Gemma2-9B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4', hf_model_id='AIDC-AI/Ovis1.6-Gemma2-9B-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='AIDC-AI/Ovis1.6-Gemma2-27B', hf_model_id='AIDC-AI/Ovis1.6-Gemma2-27B', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='ovis1_6', get_function=<function get_model_tokenizer_ovis at 0x79c0d1fbe830>, model_arch='ovis1_6', architectures=['Ovis'], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, task_type=None, ignore_patterns=[], requires=['transformers>=4.42'], tags=['vision'])",
|
359 |
+
"model_dir": "/root/.cache/huggingface/hub/models--AIDC-AI--Ovis2-4B/snapshots/5e1d0dbd5f3ba42246de46d03bb4de70224dbafd",
|
360 |
+
"hub": "<class 'swift.hub.hub.HFHub'>",
|
361 |
+
"training_args": "GRPOConfig(output_dir='/workspace/output/v39-20250215-125538', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=4, per_device_eval_batch_size=4, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/workspace/output/v39-20250215-125538/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=250, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=50, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/workspace/output/v39-20250215-125538', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=None, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed=None, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, model_init_kwargs=None, max_prompt_length=512, num_generations=4, temperature=0.9, max_completion_length=1024, ds3_gather_for_generation=True, use_vllm=False, vllm_device='auto', vllm_gpu_memory_utilization=0.9, vllm_dtype='auto', vllm_max_model_len=None, beta=0.04, reward_weights=None, sync_ref_model=False, ref_model_mixup_alpha=0.9, ref_model_sync_steps=64, log_completions=False, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, is_encoder_decoder=False, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, galore_config=None, vllm_max_num_seqs=256, vllm_enforce_eager=False, vllm_limit_mm_per_prompt=None, vllm_enable_prefix_caching=True, cosine_min_len_value_wrong=0.0, cosine_max_len_value_wrong=-0.5, cosine_min_len_value_correct=1.0, cosine_max_len_value_correct=0.5, cosine_max_len=1024, repetition_n_grams=3, repetition_max_penalty=-1.0, top_k=None, top_p=None, repetition_penalty=None)"
|
362 |
+
}
|
configuration_aimv2.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copied from https://huggingface.co/apple/aimv2-huge-patch14-448
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
|
6 |
+
__all__ = ["AIMv2Config"]
|
7 |
+
|
8 |
+
|
9 |
+
class AIMv2Config(PretrainedConfig):
|
10 |
+
"""This is the configuration class to store the configuration of an [`AIMv2Model`].
|
11 |
+
|
12 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
13 |
+
to that of the [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224).
|
14 |
+
|
15 |
+
Args:
|
16 |
+
hidden_size: Dimension of the hidden representations.
|
17 |
+
intermediate_size: Dimension of the SwiGLU representations.
|
18 |
+
num_hidden_layers: Number of hidden layers in the Transformer.
|
19 |
+
num_attention_heads: Number of attention heads for each attention layer
|
20 |
+
in the Transformer.
|
21 |
+
num_channels: Number of input channels.
|
22 |
+
image_size: Image size.
|
23 |
+
patch_size: Patch size.
|
24 |
+
rms_norm_eps: Epsilon value used for the RMS normalization layer.
|
25 |
+
attention_dropout: Dropout ratio for attention probabilities.
|
26 |
+
projection_dropout: Dropout ratio for the projection layer after the attention.
|
27 |
+
qkv_bias: Whether to add a bias to the queries, keys and values.
|
28 |
+
use_bias: Whether to add a bias in the feed-forward and projection layers.
|
29 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
30 |
+
"""
|
31 |
+
|
32 |
+
model_type: str = "aimv2"
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
hidden_size: int = 1024,
|
37 |
+
intermediate_size: int = 2816,
|
38 |
+
num_hidden_layers: int = 24,
|
39 |
+
num_attention_heads: int = 8,
|
40 |
+
num_channels: int = 3,
|
41 |
+
image_size: int = 224,
|
42 |
+
patch_size: int = 14,
|
43 |
+
rms_norm_eps: float = 1e-5,
|
44 |
+
attention_dropout: float = 0.0,
|
45 |
+
projection_dropout: float = 0.0,
|
46 |
+
qkv_bias: bool = False,
|
47 |
+
use_bias: bool = False,
|
48 |
+
**kwargs: Any,
|
49 |
+
):
|
50 |
+
super().__init__(**kwargs)
|
51 |
+
self.hidden_size = hidden_size
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.num_hidden_layers = num_hidden_layers
|
54 |
+
self.num_attention_heads = num_attention_heads
|
55 |
+
self.num_channels = num_channels
|
56 |
+
self.patch_size = patch_size
|
57 |
+
self.image_size = image_size
|
58 |
+
self.attention_dropout = attention_dropout
|
59 |
+
self.rms_norm_eps = rms_norm_eps
|
60 |
+
|
61 |
+
self.projection_dropout = projection_dropout
|
62 |
+
self.qkv_bias = qkv_bias
|
63 |
+
self.use_bias = use_bias
|
generation_config.json
CHANGED
@@ -11,5 +11,5 @@
|
|
11 |
"temperature": 0.7,
|
12 |
"top_k": 20,
|
13 |
"top_p": 0.8,
|
14 |
-
"transformers_version": "4.
|
15 |
}
|
|
|
11 |
"temperature": 0.7,
|
12 |
"top_k": 20,
|
13 |
"top_p": 0.8,
|
14 |
+
"transformers_version": "4.46.2"
|
15 |
}
|
modeling_aimv2.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from .configuration_aimv2 import AIMv2Config
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
|
11 |
+
__all__ = ["AIMv2Model"]
|
12 |
+
|
13 |
+
|
14 |
+
class RMSNorm(nn.Module):
|
15 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
16 |
+
super().__init__()
|
17 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
18 |
+
self.eps = eps
|
19 |
+
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
+
output = self._norm(x.float()).type_as(x)
|
22 |
+
return output * self.weight
|
23 |
+
|
24 |
+
def extra_repr(self) -> str:
|
25 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
26 |
+
|
27 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
29 |
+
|
30 |
+
|
31 |
+
class AIMv2SwiGLUFFN(nn.Module):
|
32 |
+
def __init__(self, config: AIMv2Config):
|
33 |
+
super().__init__()
|
34 |
+
hidden_features = config.intermediate_size
|
35 |
+
in_features = config.hidden_size
|
36 |
+
bias = config.use_bias
|
37 |
+
|
38 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
39 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
40 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
44 |
+
x = self.fc2(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class AIMv2PatchEmbed(nn.Module):
|
49 |
+
def __init__(self, config: AIMv2Config):
|
50 |
+
super().__init__()
|
51 |
+
self.proj = nn.Conv2d(
|
52 |
+
config.num_channels,
|
53 |
+
config.hidden_size,
|
54 |
+
kernel_size=(config.patch_size, config.patch_size),
|
55 |
+
stride=(config.patch_size, config.patch_size),
|
56 |
+
)
|
57 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
61 |
+
x = self.norm(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class AIMv2ViTPreprocessor(nn.Module):
|
66 |
+
def __init__(self, config: AIMv2Config):
|
67 |
+
super().__init__()
|
68 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
69 |
+
|
70 |
+
self.patchifier = AIMv2PatchEmbed(config)
|
71 |
+
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
|
72 |
+
|
73 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
74 |
+
tokens = self.patchifier(x)
|
75 |
+
_, N, _ = tokens.shape
|
76 |
+
pos_embed = self.pos_embed.to(tokens.device)
|
77 |
+
tokens = tokens + pos_embed[:, :N]
|
78 |
+
return tokens
|
79 |
+
|
80 |
+
|
81 |
+
class AIMv2Attention(nn.Module):
|
82 |
+
def __init__(self, config: AIMv2Config):
|
83 |
+
super().__init__()
|
84 |
+
dim = config.hidden_size
|
85 |
+
|
86 |
+
self.num_heads = config.num_attention_heads
|
87 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
88 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
89 |
+
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
|
90 |
+
self.proj_drop = nn.Dropout(config.projection_dropout)
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
94 |
+
) -> torch.Tensor:
|
95 |
+
B, N, C = x.shape
|
96 |
+
qkv = (
|
97 |
+
self.qkv(x)
|
98 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
99 |
+
.permute(2, 0, 3, 1, 4)
|
100 |
+
)
|
101 |
+
q, k, v = qkv.unbind(0)
|
102 |
+
|
103 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
104 |
+
x = x.transpose(1, 2).contiguous().reshape(B, N, C)
|
105 |
+
x = self.proj(x)
|
106 |
+
x = self.proj_drop(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class AIMv2Block(nn.Module):
|
111 |
+
def __init__(self, config: AIMv2Config):
|
112 |
+
super().__init__()
|
113 |
+
self.attn = AIMv2Attention(config)
|
114 |
+
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
115 |
+
self.mlp = AIMv2SwiGLUFFN(config)
|
116 |
+
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
120 |
+
) -> torch.Tensor:
|
121 |
+
x = x + self.attn(self.norm_1(x), mask)
|
122 |
+
x = x + self.mlp(self.norm_2(x))
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class AIMv2Transformer(nn.Module):
|
127 |
+
def __init__(self, config: AIMv2Config):
|
128 |
+
super().__init__()
|
129 |
+
self.blocks = nn.ModuleList(
|
130 |
+
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
|
131 |
+
)
|
132 |
+
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
133 |
+
self.gradient_checkpointing = False
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
tokens: torch.Tensor,
|
138 |
+
mask: Optional[torch.Tensor] = None,
|
139 |
+
output_hidden_states: bool = False,
|
140 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
|
141 |
+
hidden_states = () if output_hidden_states else None
|
142 |
+
for block in self.blocks:
|
143 |
+
if self.gradient_checkpointing and self.training:
|
144 |
+
tokens = self._gradient_checkpointing_func(block.__call__, tokens, mask)
|
145 |
+
else:
|
146 |
+
tokens = block(tokens, mask)
|
147 |
+
if output_hidden_states:
|
148 |
+
hidden_states += (tokens,)
|
149 |
+
tokens = self.post_trunk_norm(tokens)
|
150 |
+
return tokens, hidden_states
|
151 |
+
|
152 |
+
|
153 |
+
class AIMv2PretrainedModel(PreTrainedModel):
|
154 |
+
config_class = AIMv2Config
|
155 |
+
base_model_prefix = "aimv2"
|
156 |
+
supports_gradient_checkpointing = True
|
157 |
+
main_input_name = "pixel_values"
|
158 |
+
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
|
159 |
+
_supports_sdpa = True
|
160 |
+
|
161 |
+
|
162 |
+
class AIMv2Model(AIMv2PretrainedModel):
|
163 |
+
def __init__(self, config: AIMv2Config):
|
164 |
+
super().__init__(config)
|
165 |
+
self.preprocessor = AIMv2ViTPreprocessor(config)
|
166 |
+
self.trunk = AIMv2Transformer(config)
|
167 |
+
|
168 |
+
def forward(
|
169 |
+
self,
|
170 |
+
pixel_values: torch.Tensor,
|
171 |
+
mask: Optional[torch.Tensor] = None,
|
172 |
+
output_hidden_states: Optional[bool] = None,
|
173 |
+
return_dict: Optional[bool] = None,
|
174 |
+
) -> Union[
|
175 |
+
Tuple[torch.Tensor],
|
176 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
|
177 |
+
BaseModelOutputWithNoAttention,
|
178 |
+
]:
|
179 |
+
if output_hidden_states is None:
|
180 |
+
output_hidden_states = self.config.output_hidden_states
|
181 |
+
if return_dict is None:
|
182 |
+
return_dict = self.config.use_return_dict
|
183 |
+
|
184 |
+
x = self.preprocessor(pixel_values)
|
185 |
+
x, hidden_states = self.trunk(
|
186 |
+
x, mask, output_hidden_states=output_hidden_states
|
187 |
+
)
|
188 |
+
|
189 |
+
if not return_dict:
|
190 |
+
res = (x,)
|
191 |
+
res += (hidden_states,) if output_hidden_states else ()
|
192 |
+
return res
|
193 |
+
|
194 |
+
return BaseModelOutputWithNoAttention(
|
195 |
+
last_hidden_state=x,
|
196 |
+
hidden_states=hidden_states,
|
197 |
+
)
|
198 |
+
|
modeling_ovis.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2025 AIDC-AI
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
#
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
import importlib.metadata
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
from importlib import import_module
|
21 |
+
from typing import List, Callable, Union, Optional, Dict
|
22 |
+
|
23 |
+
import PIL.Image
|
24 |
+
import torch
|
25 |
+
from torch import Tensor
|
26 |
+
from torch.nn import init
|
27 |
+
from torch.nn.functional import softmax, gumbel_softmax, pad
|
28 |
+
from transformers.utils import is_flash_attn_2_available
|
29 |
+
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
|
30 |
+
from transformers.generation.utils import GenerateOutput
|
31 |
+
|
32 |
+
from .configuration_ovis import BaseVisualTokenizerConfig, Aimv2VisualTokenizerConfig
|
33 |
+
from .configuration_ovis import OvisConfig, ConversationFormatter
|
34 |
+
from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
|
35 |
+
|
36 |
+
# ----------------------------------------------------------------------
|
37 |
+
# Visual Tokenizer
|
38 |
+
# ----------------------------------------------------------------------
|
39 |
+
class BaseVisualTokenizer(PreTrainedModel):
|
40 |
+
base_model_prefix = "backbone"
|
41 |
+
main_input_name = None
|
42 |
+
_image_processor_class = None
|
43 |
+
_image_processor_kwargs = {}
|
44 |
+
_backbone_class = None
|
45 |
+
_backbone_name_or_path = None
|
46 |
+
|
47 |
+
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
|
48 |
+
super().__init__(config, *inputs, **kwargs)
|
49 |
+
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
|
50 |
+
self.backbone = AutoModel.from_config(self.config.backbone_config)
|
51 |
+
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
|
52 |
+
self.head = torch.nn.Sequential(
|
53 |
+
torch.nn.Linear(
|
54 |
+
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
|
55 |
+
bias=False
|
56 |
+
),
|
57 |
+
torch.nn.LayerNorm(head_dim)
|
58 |
+
)
|
59 |
+
|
60 |
+
assert all((self.image_processor.do_resize,
|
61 |
+
not getattr(self.image_processor, 'do_center_crop', False),
|
62 |
+
self.image_processor.do_rescale,
|
63 |
+
self.image_processor.do_normalize
|
64 |
+
)), f"image_processor `{self.image_processor}` is not supported currently"
|
65 |
+
|
66 |
+
def get_backbone(self):
|
67 |
+
return self.backbone
|
68 |
+
|
69 |
+
def get_image_processor(self):
|
70 |
+
return self.image_processor
|
71 |
+
|
72 |
+
def mock_input(self):
|
73 |
+
height, width = self.get_image_size()
|
74 |
+
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
|
75 |
+
|
76 |
+
def get_head(self):
|
77 |
+
return self.head
|
78 |
+
|
79 |
+
def get_image_size(self):
|
80 |
+
raise NotImplementedError
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def construct_image_placeholders(grid):
|
84 |
+
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
|
85 |
+
if grid[0] * grid[1] > 1:
|
86 |
+
for r in range(grid[0]):
|
87 |
+
for c in range(grid[1]):
|
88 |
+
image_placeholders.append(IMAGE_ATOM_ID)
|
89 |
+
if c < grid[1] - 1:
|
90 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
|
91 |
+
if r < grid[0] - 1:
|
92 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
|
93 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
|
94 |
+
return image_placeholders
|
95 |
+
|
96 |
+
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
|
97 |
+
def _preprocess(img: PIL.Image.Image, side):
|
98 |
+
# first resize and preprocess
|
99 |
+
w, h = img.size
|
100 |
+
if w == h:
|
101 |
+
new_width = new_height = side
|
102 |
+
elif w > h:
|
103 |
+
new_width = side
|
104 |
+
new_height = int(h / w * new_width)
|
105 |
+
else:
|
106 |
+
new_height = side
|
107 |
+
new_width = int(w / h * new_height)
|
108 |
+
new_size = dict(height=new_height, width=new_width)
|
109 |
+
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
|
110 |
+
|
111 |
+
# then pad to square
|
112 |
+
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
|
113 |
+
new_height, new_width = pixel_values.shape[2:]
|
114 |
+
if new_height == new_width:
|
115 |
+
square_values[:, :, :, :] = pixel_values
|
116 |
+
elif new_height > new_width:
|
117 |
+
from_index = (side - new_width) // 2
|
118 |
+
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
|
119 |
+
else:
|
120 |
+
from_index = (side - new_height) // 2
|
121 |
+
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
|
122 |
+
|
123 |
+
return square_values
|
124 |
+
|
125 |
+
def _partition(img, grid):
|
126 |
+
w, h = img.size
|
127 |
+
row_height = h // grid[0]
|
128 |
+
col_width = w // grid[1]
|
129 |
+
|
130 |
+
partition = []
|
131 |
+
for row in range(grid[0]):
|
132 |
+
for col in range(grid[1]):
|
133 |
+
left = col * col_width
|
134 |
+
upper = row * row_height
|
135 |
+
right = w if col == grid[1] - 1 else (col + 1) * col_width
|
136 |
+
lower = h if row == grid[0] - 1 else (row + 1) * row_height
|
137 |
+
partition.append((left, upper, right, lower))
|
138 |
+
|
139 |
+
return partition
|
140 |
+
|
141 |
+
def _covering_area(left, upper, right, lower, side):
|
142 |
+
w = right - left
|
143 |
+
h = lower - upper
|
144 |
+
w, h = max(w, h), min(w, h)
|
145 |
+
if w > side:
|
146 |
+
h = h / w * side
|
147 |
+
w = side
|
148 |
+
return w * h
|
149 |
+
|
150 |
+
def _get_best_grid(img, side):
|
151 |
+
img_area = img.size[0] * img.size[1]
|
152 |
+
|
153 |
+
candidate_grids = []
|
154 |
+
for i in range(1, max_partition + 1):
|
155 |
+
for j in range(1, max_partition + 1):
|
156 |
+
if i * j <= max_partition:
|
157 |
+
candidate_grids.append((i, j))
|
158 |
+
|
159 |
+
all_grids = []
|
160 |
+
good_grids = []
|
161 |
+
for grid in candidate_grids:
|
162 |
+
partition = _partition(img, grid)
|
163 |
+
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
|
164 |
+
assert covering_ratio <= 1.0
|
165 |
+
all_grids.append((grid, covering_ratio))
|
166 |
+
if covering_ratio > covering_threshold:
|
167 |
+
good_grids.append((grid, covering_ratio))
|
168 |
+
|
169 |
+
if len(good_grids) > 0:
|
170 |
+
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
|
171 |
+
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
|
172 |
+
else:
|
173 |
+
# pick the partition with maximum covering_ratio and break the tie using #sub_images
|
174 |
+
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
|
175 |
+
|
176 |
+
if convert_to_rgb and image.mode != 'RGB':
|
177 |
+
image = image.convert('RGB')
|
178 |
+
|
179 |
+
sides = self.get_image_size()
|
180 |
+
if sides[0] != sides[1]:
|
181 |
+
raise ValueError('get_image_size() returns non-square size')
|
182 |
+
side = sides[0]
|
183 |
+
grid = _get_best_grid(image, side)
|
184 |
+
partition = _partition(image, grid)
|
185 |
+
crops = [image.crop(p) for p in partition]
|
186 |
+
if len(crops) > 1:
|
187 |
+
crops.insert(0, image)
|
188 |
+
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
|
189 |
+
image_placeholders = self.construct_image_placeholders(grid)
|
190 |
+
return pixel_values, image_placeholders
|
191 |
+
|
192 |
+
def tokenize(self, logits):
|
193 |
+
def st_argmax(y_soft, dim): # straight-through softmax
|
194 |
+
index = y_soft.max(dim, keepdim=True)[1]
|
195 |
+
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
196 |
+
ret = y_hard - y_soft.detach() + y_soft
|
197 |
+
return ret
|
198 |
+
|
199 |
+
if self.config.tokenize_function == 'softmax':
|
200 |
+
tokens = softmax(logits, dim=-1)
|
201 |
+
elif self.config.tokenize_function == 'gumbel_argmax':
|
202 |
+
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
203 |
+
elif self.config.tokenize_function == 'st_argmax':
|
204 |
+
tokens = st_argmax(logits, dim=-1)
|
205 |
+
else:
|
206 |
+
raise ValueError(
|
207 |
+
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
|
208 |
+
return tokens
|
209 |
+
|
210 |
+
def encode(self, pixel_values):
|
211 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
212 |
+
features = output.hidden_states[-1]
|
213 |
+
if self.config.drop_cls_token:
|
214 |
+
features = features[:, 1:, :]
|
215 |
+
|
216 |
+
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
|
217 |
+
# e.g., for hidden_stride=2, this leads to a token length reduction: 1024 -> 256 for aimv2
|
218 |
+
if self.config.hidden_stride > 1:
|
219 |
+
n, l, d = features.shape # this `d` maybe different from the above `d
|
220 |
+
sqrt_l = int(l ** 0.5)
|
221 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
222 |
+
features = features.reshape(n, sqrt_l, sqrt_l, d)
|
223 |
+
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
|
224 |
+
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
|
225 |
+
sqrt_l += pl
|
226 |
+
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
|
227 |
+
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
|
228 |
+
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
|
229 |
+
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
|
230 |
+
features = features.reshape(
|
231 |
+
n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
|
232 |
+
|
233 |
+
return features
|
234 |
+
|
235 |
+
def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
236 |
+
features = self.encode(pixel_values)
|
237 |
+
logits = self.head(features)
|
238 |
+
tokens = self.tokenize(logits)
|
239 |
+
# tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
|
240 |
+
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
241 |
+
batch_size, token_len, _ = tokens.shape
|
242 |
+
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
|
243 |
+
dtype=tokens.dtype,
|
244 |
+
device=tokens.device,
|
245 |
+
layout=tokens.layout,
|
246 |
+
requires_grad=False)
|
247 |
+
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
248 |
+
return tokens
|
249 |
+
|
250 |
+
|
251 |
+
class Aimv2VisualTokenizer(BaseVisualTokenizer):
|
252 |
+
config_class = Aimv2VisualTokenizerConfig
|
253 |
+
supports_gradient_checkpointing = True
|
254 |
+
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
|
255 |
+
_image_processor_kwargs = dict(do_center_crop=False)
|
256 |
+
|
257 |
+
def get_image_size(self):
|
258 |
+
height = self.image_processor.crop_size["height"]
|
259 |
+
width = self.image_processor.crop_size["width"]
|
260 |
+
return height, width
|
261 |
+
|
262 |
+
|
263 |
+
AutoModel.register(Aimv2VisualTokenizerConfig, Aimv2VisualTokenizer)
|
264 |
+
|
265 |
+
|
266 |
+
# ----------------------------------------------------------------------
|
267 |
+
# Ovis
|
268 |
+
# ----------------------------------------------------------------------
|
269 |
+
class VisualEmbedding(torch.nn.Embedding):
|
270 |
+
def forward(self, visual_tokens: Tensor) -> Tensor:
|
271 |
+
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
|
272 |
+
return super().forward(visual_tokens)
|
273 |
+
return torch.matmul(visual_tokens, self.weight)
|
274 |
+
|
275 |
+
def reset_parameters(self, mean=0., std=1.) -> None:
|
276 |
+
init.normal_(self.weight, mean=mean, std=std)
|
277 |
+
self._fill_padding_idx_with_zero()
|
278 |
+
|
279 |
+
|
280 |
+
class OvisPreTrainedModel(PreTrainedModel):
|
281 |
+
config_class = OvisConfig
|
282 |
+
base_model_prefix = "ovis"
|
283 |
+
|
284 |
+
|
285 |
+
class Ovis(OvisPreTrainedModel):
|
286 |
+
|
287 |
+
def __init__(self, config: OvisConfig, *inputs, **kwargs):
|
288 |
+
super().__init__(config, *inputs, **kwargs)
|
289 |
+
attn_kwargs = dict()
|
290 |
+
if self.config.llm_attn_implementation:
|
291 |
+
if self.config.llm_attn_implementation == "flash_attention_2":
|
292 |
+
assert (is_flash_attn_2_available() and
|
293 |
+
version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.6.3")), \
|
294 |
+
"Using `flash_attention_2` requires having `flash_attn>=2.6.3` installed."
|
295 |
+
attn_kwargs["attn_implementation"] = self.config.llm_attn_implementation
|
296 |
+
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
|
297 |
+
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
|
298 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
299 |
+
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
|
300 |
+
image_processor_name_or_path=self.config.name_or_path)
|
301 |
+
self.vte = VisualEmbedding(
|
302 |
+
self.config.visual_tokenizer_config.vocab_size,
|
303 |
+
self.config.hidden_size,
|
304 |
+
device=self.visual_tokenizer.device,
|
305 |
+
dtype=self.visual_tokenizer.dtype
|
306 |
+
)
|
307 |
+
|
308 |
+
def _merge_modules(modules_list: tuple):
|
309 |
+
merged_modules = []
|
310 |
+
for modules in modules_list:
|
311 |
+
merged_modules.extend(modules if modules else [])
|
312 |
+
return merged_modules
|
313 |
+
|
314 |
+
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
|
315 |
+
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
|
316 |
+
self._keep_in_fp32_modules = _merge_modules(
|
317 |
+
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
|
318 |
+
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
|
319 |
+
self.supports_gradient_checkpointing = True
|
320 |
+
self._supports_flash_attn_2 = True
|
321 |
+
|
322 |
+
def get_text_tokenizer(self):
|
323 |
+
return self.text_tokenizer
|
324 |
+
|
325 |
+
def get_visual_tokenizer(self):
|
326 |
+
return self.visual_tokenizer
|
327 |
+
|
328 |
+
def tie_weights(self):
|
329 |
+
if not self.config.disable_tie_weight:
|
330 |
+
self.get_llm().tie_weights()
|
331 |
+
|
332 |
+
def get_llm(self):
|
333 |
+
return self.llm
|
334 |
+
|
335 |
+
def get_vte(self):
|
336 |
+
return self.vte
|
337 |
+
|
338 |
+
def get_wte(self):
|
339 |
+
return self.llm.get_input_embeddings()
|
340 |
+
|
341 |
+
def get_conversation_formatter(self) -> ConversationFormatter:
|
342 |
+
if getattr(self, 'conversation_formatter', None) is None:
|
343 |
+
self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
|
344 |
+
self.config.conversation_formatter_class)(self.text_tokenizer)
|
345 |
+
return self.conversation_formatter
|
346 |
+
|
347 |
+
def forward(
|
348 |
+
self,
|
349 |
+
input_ids: torch.Tensor,
|
350 |
+
attention_mask: torch.Tensor,
|
351 |
+
labels: Optional[torch.Tensor],
|
352 |
+
pixel_values: List[Optional[torch.Tensor]],
|
353 |
+
**kwargs
|
354 |
+
):
|
355 |
+
# assert self.training, "`forward` can only be used in training. For inference, use `generate`."
|
356 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
357 |
+
text_input_ids=input_ids,
|
358 |
+
text_attention_masks=attention_mask,
|
359 |
+
text_labels=labels,
|
360 |
+
pixel_values=pixel_values
|
361 |
+
)
|
362 |
+
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
|
363 |
+
|
364 |
+
def merge_multimodal(
|
365 |
+
self,
|
366 |
+
text_input_ids: torch.Tensor,
|
367 |
+
text_attention_masks: torch.Tensor,
|
368 |
+
text_labels: Optional[torch.Tensor],
|
369 |
+
pixel_values: List[Optional[torch.Tensor]],
|
370 |
+
left_padding: bool = False
|
371 |
+
):
|
372 |
+
input_device = text_input_ids.device
|
373 |
+
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
|
374 |
+
visual_indicator_embeds = self.get_vte()(
|
375 |
+
torch.tensor(
|
376 |
+
list(range(visual_vocab_szie - 5, visual_vocab_szie)),
|
377 |
+
dtype=torch.long,
|
378 |
+
device=self.get_visual_tokenizer().device
|
379 |
+
)
|
380 |
+
).to(device=input_device)
|
381 |
+
|
382 |
+
if self.training:
|
383 |
+
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
|
384 |
+
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
|
385 |
+
# (see below in this function); so, the gradient will not be affected.
|
386 |
+
num_images = [x.shape[0] for x in pixel_values]
|
387 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
|
388 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
389 |
+
split_size_or_sections=num_images, dim=0)
|
390 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
391 |
+
split_size_or_sections=num_images, dim=0)
|
392 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
393 |
+
visual_input_ids]
|
394 |
+
else:
|
395 |
+
# When inference, sample can include only text with `None` pixel_value
|
396 |
+
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
|
397 |
+
if sum(num_images) > 0:
|
398 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
|
399 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
400 |
+
split_size_or_sections=num_images, dim=0)
|
401 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
402 |
+
split_size_or_sections=num_images, dim=0)
|
403 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
404 |
+
visual_input_ids]
|
405 |
+
else:
|
406 |
+
# just placeholders
|
407 |
+
visual_embeds = [None] * len(num_images)
|
408 |
+
visual_input_ids = [None] * len(num_images)
|
409 |
+
visual_labels = [None] * len(num_images)
|
410 |
+
# just placeholders
|
411 |
+
if text_labels is None:
|
412 |
+
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
|
413 |
+
|
414 |
+
input_embeds = []
|
415 |
+
attention_masks = []
|
416 |
+
labels = []
|
417 |
+
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
|
418 |
+
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
|
419 |
+
):
|
420 |
+
placeholder_token_mask = torch.lt(text_input_id, 0)
|
421 |
+
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
|
422 |
+
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
|
423 |
+
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
|
424 |
+
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
|
425 |
+
if len(image_atom_positions) > 0:
|
426 |
+
input_embed_parts = []
|
427 |
+
attention_mask_parts = []
|
428 |
+
label_parts = []
|
429 |
+
prev_image_atom_position = -1
|
430 |
+
for index, image_atom_position in enumerate(image_atom_positions):
|
431 |
+
input_embed_parts.append(
|
432 |
+
text_embed[prev_image_atom_position + 1:image_atom_position, :])
|
433 |
+
label_parts.append(
|
434 |
+
text_label[prev_image_atom_position + 1:image_atom_position])
|
435 |
+
attention_mask_parts.append(
|
436 |
+
text_attention_mask[prev_image_atom_position + 1:image_atom_position])
|
437 |
+
input_embed_parts.append(visual_embed[index])
|
438 |
+
attention_mask_parts.append(
|
439 |
+
torch.ones_like(visual_label[index], dtype=torch.bool))
|
440 |
+
label_parts.append(visual_label[index])
|
441 |
+
prev_image_atom_position = image_atom_position
|
442 |
+
if prev_image_atom_position + 1 < text_input_id.shape[0]:
|
443 |
+
input_embed_parts.append(
|
444 |
+
text_embed[prev_image_atom_position + 1:, :])
|
445 |
+
attention_mask_parts.append(
|
446 |
+
text_attention_mask[prev_image_atom_position + 1:])
|
447 |
+
label_parts.append(
|
448 |
+
text_label[prev_image_atom_position + 1:])
|
449 |
+
input_embed = torch.cat(input_embed_parts, dim=0)
|
450 |
+
attention_mask = torch.cat(attention_mask_parts, dim=0)
|
451 |
+
label = torch.cat(label_parts, dim=0)
|
452 |
+
else:
|
453 |
+
input_embed = text_embed
|
454 |
+
attention_mask = text_attention_mask
|
455 |
+
label = text_label
|
456 |
+
if self.training:
|
457 |
+
# Make visual_embed & visual_indicator_embeds involved in the backward graph,
|
458 |
+
# to be compatible with deepspeed zero and ddp.
|
459 |
+
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
|
460 |
+
input_embeds.append(input_embed)
|
461 |
+
attention_masks.append(attention_mask)
|
462 |
+
labels.append(label)
|
463 |
+
|
464 |
+
if self.training: # padding to self.config.multimodal_max_length for increased training speed
|
465 |
+
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
|
466 |
+
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
|
467 |
+
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
|
468 |
+
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
|
469 |
+
batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
|
470 |
+
batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
|
471 |
+
batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
|
472 |
+
|
473 |
+
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
|
474 |
+
|
475 |
+
def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
|
476 |
+
if not left_padding:
|
477 |
+
pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
|
478 |
+
return pad_sequence[:,:self.config.multimodal_max_length]
|
479 |
+
else:
|
480 |
+
pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
|
481 |
+
return pad_sequence[:,-self.config.multimodal_max_length:]
|
482 |
+
|
483 |
+
def preprocess_inputs(
|
484 |
+
self,
|
485 |
+
text_or_conversations: Union[List[Dict], str],
|
486 |
+
images: Optional[List[PIL.Image.Image]],
|
487 |
+
max_partition=9,
|
488 |
+
generation_preface='',
|
489 |
+
return_labels=False,
|
490 |
+
propagate_exception=True,
|
491 |
+
frame_selector=None,
|
492 |
+
frame_selector_kwargs=None
|
493 |
+
):
|
494 |
+
# convert text to conversations
|
495 |
+
if isinstance(text_or_conversations, str):
|
496 |
+
conversations = [{
|
497 |
+
"from": "human",
|
498 |
+
"value": text_or_conversations
|
499 |
+
}]
|
500 |
+
elif isinstance(text_or_conversations, list):
|
501 |
+
conversations = text_or_conversations
|
502 |
+
else:
|
503 |
+
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
|
504 |
+
f' but got {type(text_or_conversations)}')
|
505 |
+
|
506 |
+
if frame_selector is not None:
|
507 |
+
frame_selector_kwargs = frame_selector_kwargs or {}
|
508 |
+
conversations, images = frame_selector(conversations=conversations, frames=images, **frame_selector_kwargs)
|
509 |
+
|
510 |
+
# format conversations
|
511 |
+
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
|
512 |
+
conversations, generation_preface=generation_preface)
|
513 |
+
|
514 |
+
# place image placeholders
|
515 |
+
input_ids = []
|
516 |
+
labels = []
|
517 |
+
pixel_values = []
|
518 |
+
invalidate_label = False
|
519 |
+
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
|
520 |
+
last_image_token_index = -1
|
521 |
+
for i in range(len(image_token_indices)):
|
522 |
+
head = 0 if i == 0 else image_token_indices[i - 1] + 1
|
523 |
+
tail = image_token_indices[i]
|
524 |
+
last_image_token_index = tail
|
525 |
+
input_ids.extend(raw_input_ids[head:tail])
|
526 |
+
labels.extend(raw_labels[head:tail])
|
527 |
+
try:
|
528 |
+
image = images[i]
|
529 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
|
530 |
+
image, max_partition=max_partition)
|
531 |
+
except Exception as e:
|
532 |
+
if propagate_exception:
|
533 |
+
raise e
|
534 |
+
logging.exception(e)
|
535 |
+
invalidate_label = True
|
536 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
|
537 |
+
input_ids.extend(image_placeholders)
|
538 |
+
labels.extend([IGNORE_ID] * len(image_placeholders))
|
539 |
+
pixel_values.append(raw_pixel_values)
|
540 |
+
input_ids.extend(raw_input_ids[last_image_token_index + 1:])
|
541 |
+
labels.extend(raw_labels[last_image_token_index + 1:])
|
542 |
+
|
543 |
+
# return tensors
|
544 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
545 |
+
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
|
546 |
+
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
|
547 |
+
|
548 |
+
if return_labels:
|
549 |
+
return prompt, input_ids, pixel_values, labels
|
550 |
+
else:
|
551 |
+
return prompt, input_ids, pixel_values
|
552 |
+
|
553 |
+
def save_pretrained(
|
554 |
+
self,
|
555 |
+
save_directory: Union[str, os.PathLike],
|
556 |
+
is_main_process: bool = True,
|
557 |
+
state_dict: Optional[dict] = None,
|
558 |
+
save_function: Callable = torch.save,
|
559 |
+
push_to_hub: bool = False,
|
560 |
+
max_shard_size: Union[int, str] = "5GB",
|
561 |
+
safe_serialization: bool = True,
|
562 |
+
variant: Optional[str] = None,
|
563 |
+
token: Optional[Union[str, bool]] = None,
|
564 |
+
save_peft_format: bool = True,
|
565 |
+
**kwargs
|
566 |
+
):
|
567 |
+
super().save_pretrained(save_directory,
|
568 |
+
is_main_process=is_main_process,
|
569 |
+
state_dict=state_dict,
|
570 |
+
save_function=save_function,
|
571 |
+
safe_serialization=safe_serialization)
|
572 |
+
self.get_text_tokenizer().save_pretrained(save_directory)
|
573 |
+
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
|
574 |
+
|
575 |
+
def generate(
|
576 |
+
self,
|
577 |
+
inputs: Optional[torch.Tensor] = None,
|
578 |
+
**kwargs
|
579 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
580 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
581 |
+
text_input_ids=inputs,
|
582 |
+
text_attention_masks=kwargs.pop('attention_mask'),
|
583 |
+
text_labels=None,
|
584 |
+
pixel_values=kwargs.pop('pixel_values'),
|
585 |
+
left_padding=True
|
586 |
+
)
|
587 |
+
inputs_embeds = inputs_embeds.detach()
|
588 |
+
torch.cuda.empty_cache()
|
589 |
+
|
590 |
+
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
|