Upload folder using huggingface_hub
Browse files- .gitattributes +7 -0
- README.md +781 -0
- sts-multilingual-mpnet-base-v2.Q2_K.gguf +3 -0
- sts-multilingual-mpnet-base-v2.Q3_K_M.gguf +3 -0
- sts-multilingual-mpnet-base-v2.Q4_K_M.gguf +3 -0
- sts-multilingual-mpnet-base-v2.Q5_K_M.gguf +3 -0
- sts-multilingual-mpnet-base-v2.Q6_K.gguf +3 -0
- sts-multilingual-mpnet-base-v2.Q8_0.gguf +3 -0
- sts-multilingual-mpnet-base-v2.bf16.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
sts-multilingual-mpnet-base-v2.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
sts-multilingual-mpnet-base-v2.Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
sts-multilingual-mpnet-base-v2.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
39 |
+
sts-multilingual-mpnet-base-v2.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
40 |
+
sts-multilingual-mpnet-base-v2.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
|
41 |
+
sts-multilingual-mpnet-base-v2.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
|
42 |
+
sts-multilingual-mpnet-base-v2.bf16.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- mteb
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:AnglELoss
|
11 |
+
- autoquant
|
12 |
+
- gguf
|
13 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
14 |
+
widget:
|
15 |
+
- source_sentence: 有些人在路上溜达。
|
16 |
+
sentences:
|
17 |
+
- Folk går
|
18 |
+
- Otururken gitar çalan adam.
|
19 |
+
- ארה"ב קבעה שסוריה השתמשה בנשק כימי
|
20 |
+
- source_sentence: 緬甸以前稱為緬甸。
|
21 |
+
sentences:
|
22 |
+
- 缅甸以前叫缅甸。
|
23 |
+
- This is very contradictory.
|
24 |
+
- 한 남자가 아기를 안고 의자에 앉아 잠들어 있다.
|
25 |
+
- source_sentence: אדם כותב.
|
26 |
+
sentences:
|
27 |
+
- האדם כותב.
|
28 |
+
- questa non è una risposta.
|
29 |
+
- 7 שוטרים נהרגו ו-4 שוטרים נפצעו.
|
30 |
+
- source_sentence: הם מפחדים.
|
31 |
+
sentences:
|
32 |
+
- liên quan đến rủi ro đáng kể;
|
33 |
+
- A man is playing a guitar.
|
34 |
+
- A man is playing a piano.
|
35 |
+
- source_sentence: 一个女人正在洗澡。
|
36 |
+
sentences:
|
37 |
+
- A woman is taking a bath.
|
38 |
+
- En jente børster håret sitt
|
39 |
+
- אדם מחלק תפוח אדמה.
|
40 |
+
pipeline_tag: sentence-similarity
|
41 |
+
model-index:
|
42 |
+
- name: Gameselo/STS-multilingual-mpnet-base-v2
|
43 |
+
results:
|
44 |
+
- task:
|
45 |
+
type: STS
|
46 |
+
dataset:
|
47 |
+
name: MTEB STS22
|
48 |
+
type: mteb/sts22-crosslingual-sts
|
49 |
+
config: it
|
50 |
+
split: test
|
51 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
52 |
+
metrics:
|
53 |
+
- type: cosine_spearman
|
54 |
+
value: 0.6847049462613332
|
55 |
+
- task:
|
56 |
+
type: STS
|
57 |
+
dataset:
|
58 |
+
name: MTEB STS22
|
59 |
+
type: mteb/sts22-crosslingual-sts
|
60 |
+
config: es
|
61 |
+
split: test
|
62 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
63 |
+
metrics:
|
64 |
+
- type: cosine_spearman
|
65 |
+
value: 0.6620948502618977
|
66 |
+
- task:
|
67 |
+
type: STS
|
68 |
+
dataset:
|
69 |
+
name: MTEB STS22
|
70 |
+
type: mteb/sts22-crosslingual-sts
|
71 |
+
config: fr
|
72 |
+
split: test
|
73 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
74 |
+
metrics:
|
75 |
+
- type: cosine_spearman
|
76 |
+
value: 0.7875616631597785
|
77 |
+
- task:
|
78 |
+
type: STS
|
79 |
+
dataset:
|
80 |
+
name: MTEB STS22
|
81 |
+
type: mteb/sts22-crosslingual-sts
|
82 |
+
config: pl-en
|
83 |
+
split: test
|
84 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
85 |
+
metrics:
|
86 |
+
- type: cosine_spearman
|
87 |
+
value: 0.7510805416538202
|
88 |
+
- task:
|
89 |
+
type: STS
|
90 |
+
dataset:
|
91 |
+
name: MTEB STS22
|
92 |
+
type: mteb/sts22-crosslingual-sts
|
93 |
+
config: ar
|
94 |
+
split: test
|
95 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
96 |
+
metrics:
|
97 |
+
- type: cosine_spearman
|
98 |
+
value: 0.6265329479575293
|
99 |
+
- task:
|
100 |
+
type: STS
|
101 |
+
dataset:
|
102 |
+
name: MTEB STS22
|
103 |
+
type: mteb/sts22-crosslingual-sts
|
104 |
+
config: pl
|
105 |
+
split: test
|
106 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
107 |
+
metrics:
|
108 |
+
- type: cosine_spearman
|
109 |
+
value: 0.4335552432730643
|
110 |
+
- task:
|
111 |
+
type: STS
|
112 |
+
dataset:
|
113 |
+
name: MTEB STS22
|
114 |
+
type: mteb/sts22-crosslingual-sts
|
115 |
+
config: de
|
116 |
+
split: test
|
117 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
118 |
+
metrics:
|
119 |
+
- type: cosine_spearman
|
120 |
+
value: 0.5774252131250034
|
121 |
+
- task:
|
122 |
+
type: STS
|
123 |
+
dataset:
|
124 |
+
name: MTEB STS22
|
125 |
+
type: mteb/sts22-crosslingual-sts
|
126 |
+
config: tr
|
127 |
+
split: test
|
128 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
129 |
+
metrics:
|
130 |
+
- type: cosine_spearman
|
131 |
+
value: 0.6383757017928495
|
132 |
+
- task:
|
133 |
+
type: STS
|
134 |
+
dataset:
|
135 |
+
name: MTEB STS22
|
136 |
+
type: mteb/sts22-crosslingual-sts
|
137 |
+
config: es-it
|
138 |
+
split: test
|
139 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
140 |
+
metrics:
|
141 |
+
- type: cosine_spearman
|
142 |
+
value: 0.6624635951676386
|
143 |
+
- task:
|
144 |
+
type: STS
|
145 |
+
dataset:
|
146 |
+
name: MTEB STS22
|
147 |
+
type: mteb/sts22-crosslingual-sts
|
148 |
+
config: ru
|
149 |
+
split: test
|
150 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
151 |
+
metrics:
|
152 |
+
- type: cosine_spearman
|
153 |
+
value: 0.5866853707548388
|
154 |
+
- task:
|
155 |
+
type: STS
|
156 |
+
dataset:
|
157 |
+
name: MTEB STS22
|
158 |
+
type: mteb/sts22-crosslingual-sts
|
159 |
+
config: en
|
160 |
+
split: test
|
161 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
162 |
+
metrics:
|
163 |
+
- type: cosine_spearman
|
164 |
+
value: 0.6385354535483773
|
165 |
+
- task:
|
166 |
+
type: STS
|
167 |
+
dataset:
|
168 |
+
name: MTEB STS22
|
169 |
+
type: mteb/sts22-crosslingual-sts
|
170 |
+
config: zh-en
|
171 |
+
split: test
|
172 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
173 |
+
metrics:
|
174 |
+
- type: cosine_spearman
|
175 |
+
value: 0.6537294853166558
|
176 |
+
- task:
|
177 |
+
type: STS
|
178 |
+
dataset:
|
179 |
+
name: MTEB STS22
|
180 |
+
type: mteb/sts22-crosslingual-sts
|
181 |
+
config: zh
|
182 |
+
split: test
|
183 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
184 |
+
metrics:
|
185 |
+
- type: cosine_spearman
|
186 |
+
value: 0.6319430830291571
|
187 |
+
- task:
|
188 |
+
type: STS
|
189 |
+
dataset:
|
190 |
+
name: MTEB STS22
|
191 |
+
type: mteb/sts22-crosslingual-sts
|
192 |
+
config: fr-pl
|
193 |
+
split: test
|
194 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
195 |
+
metrics:
|
196 |
+
- type: cosine_spearman
|
197 |
+
value: 0.8451542547285167
|
198 |
+
- task:
|
199 |
+
type: STS
|
200 |
+
dataset:
|
201 |
+
name: MTEB STS22
|
202 |
+
type: mteb/sts22-crosslingual-sts
|
203 |
+
config: de-fr
|
204 |
+
split: test
|
205 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
206 |
+
metrics:
|
207 |
+
- type: cosine_spearman
|
208 |
+
value: 0.5798716781400349
|
209 |
+
- task:
|
210 |
+
type: STS
|
211 |
+
dataset:
|
212 |
+
name: MTEB STS22
|
213 |
+
type: mteb/sts22-crosslingual-sts
|
214 |
+
config: es-en
|
215 |
+
split: test
|
216 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
217 |
+
metrics:
|
218 |
+
- type: cosine_spearman
|
219 |
+
value: 0.7518021273920814
|
220 |
+
- task:
|
221 |
+
type: STS
|
222 |
+
dataset:
|
223 |
+
name: MTEB STS22
|
224 |
+
type: mteb/sts22-crosslingual-sts
|
225 |
+
config: de-en
|
226 |
+
split: test
|
227 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
228 |
+
metrics:
|
229 |
+
- type: cosine_spearman
|
230 |
+
value: 0.5749790581441845
|
231 |
+
- task:
|
232 |
+
type: STS
|
233 |
+
dataset:
|
234 |
+
name: MTEB STS22
|
235 |
+
type: mteb/sts22-crosslingual-sts
|
236 |
+
config: de-pl
|
237 |
+
split: test
|
238 |
+
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
|
239 |
+
metrics:
|
240 |
+
- type: cosine_spearman
|
241 |
+
value: 0.44220332625465214
|
242 |
+
- task:
|
243 |
+
type: STS
|
244 |
+
dataset:
|
245 |
+
name: MTEB STSBenchmark
|
246 |
+
type: mteb/stsbenchmark-sts
|
247 |
+
config: default
|
248 |
+
split: test
|
249 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
250 |
+
metrics:
|
251 |
+
- type: cosine_spearman
|
252 |
+
value: 0.9762486352335524
|
253 |
+
- task:
|
254 |
+
type: STS
|
255 |
+
dataset:
|
256 |
+
name: MTEB STS17
|
257 |
+
type: mteb/sts17-crosslingual-sts
|
258 |
+
config: en-tr
|
259 |
+
split: test
|
260 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
261 |
+
metrics:
|
262 |
+
- type: cosine_spearman
|
263 |
+
value: 0.7987027653005363
|
264 |
+
- task:
|
265 |
+
type: STS
|
266 |
+
dataset:
|
267 |
+
name: MTEB STS17
|
268 |
+
type: mteb/sts17-crosslingual-sts
|
269 |
+
config: ko-ko
|
270 |
+
split: test
|
271 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
272 |
+
metrics:
|
273 |
+
- type: cosine_spearman
|
274 |
+
value: 0.9766336939338607
|
275 |
+
- task:
|
276 |
+
type: STS
|
277 |
+
dataset:
|
278 |
+
name: MTEB STS17
|
279 |
+
type: mteb/sts17-crosslingual-sts
|
280 |
+
config: fr-en
|
281 |
+
split: test
|
282 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
283 |
+
metrics:
|
284 |
+
- type: cosine_spearman
|
285 |
+
value: 0.9067607122592818
|
286 |
+
- task:
|
287 |
+
type: STS
|
288 |
+
dataset:
|
289 |
+
name: MTEB STS17
|
290 |
+
type: mteb/sts17-crosslingual-sts
|
291 |
+
config: en-ar
|
292 |
+
split: test
|
293 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
294 |
+
metrics:
|
295 |
+
- type: cosine_spearman
|
296 |
+
value: 0.7703365842088069
|
297 |
+
- task:
|
298 |
+
type: STS
|
299 |
+
dataset:
|
300 |
+
name: MTEB STS17
|
301 |
+
type: mteb/sts17-crosslingual-sts
|
302 |
+
config: nl-en
|
303 |
+
split: test
|
304 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
305 |
+
metrics:
|
306 |
+
- type: cosine_spearman
|
307 |
+
value: 0.9114826394926738
|
308 |
+
- task:
|
309 |
+
type: STS
|
310 |
+
dataset:
|
311 |
+
name: MTEB STS17
|
312 |
+
type: mteb/sts17-crosslingual-sts
|
313 |
+
config: it-en
|
314 |
+
split: test
|
315 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
316 |
+
metrics:
|
317 |
+
- type: cosine_spearman
|
318 |
+
value: 0.9246785886944904
|
319 |
+
- task:
|
320 |
+
type: STS
|
321 |
+
dataset:
|
322 |
+
name: MTEB STS17
|
323 |
+
type: mteb/sts17-crosslingual-sts
|
324 |
+
config: ar-ar
|
325 |
+
split: test
|
326 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
327 |
+
metrics:
|
328 |
+
- type: cosine_spearman
|
329 |
+
value: 0.8124393788492182
|
330 |
+
- task:
|
331 |
+
type: STS
|
332 |
+
dataset:
|
333 |
+
name: MTEB STS17
|
334 |
+
type: mteb/sts17-crosslingual-sts
|
335 |
+
config: es-es
|
336 |
+
split: test
|
337 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
338 |
+
metrics:
|
339 |
+
- type: cosine_spearman
|
340 |
+
value: 0.872701191632785
|
341 |
+
- task:
|
342 |
+
type: STS
|
343 |
+
dataset:
|
344 |
+
name: MTEB STS17
|
345 |
+
type: mteb/sts17-crosslingual-sts
|
346 |
+
config: en-de
|
347 |
+
split: test
|
348 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
349 |
+
metrics:
|
350 |
+
- type: cosine_spearman
|
351 |
+
value: 0.9109414091487618
|
352 |
+
- task:
|
353 |
+
type: STS
|
354 |
+
dataset:
|
355 |
+
name: MTEB STS17
|
356 |
+
type: mteb/sts17-crosslingual-sts
|
357 |
+
config: es-en
|
358 |
+
split: test
|
359 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
360 |
+
metrics:
|
361 |
+
- type: cosine_spearman
|
362 |
+
value: 0.8553203530552356
|
363 |
+
- task:
|
364 |
+
type: STS
|
365 |
+
dataset:
|
366 |
+
name: MTEB STS17
|
367 |
+
type: mteb/sts17-crosslingual-sts
|
368 |
+
config: en-en
|
369 |
+
split: test
|
370 |
+
revision: faeb762787bd10488a50c8b5be4a3b82e411949c
|
371 |
+
metrics:
|
372 |
+
- type: cosine_spearman
|
373 |
+
value: 0.9378741534997558
|
374 |
+
---
|
375 |
+
|
376 |
+
## State-of-the-Art Results Comparison (MTEB STS Multilingual Leaderboard)
|
377 |
+
|
378 |
+
| Dataset | State-of-the-art (Multi) | STSb-XLM-RoBERTa-base | STS Multilingual MPNet base v2 |
|
379 |
+
|-------------------|--------------------------|-----------------------|--------------------------------------|
|
380 |
+
| Average | 73.17 | 71.68 | **73.89** |
|
381 |
+
| STS17 (ar-ar) | **81.87** | 80.43 | 81.24 |
|
382 |
+
| STS17 (en-ar) | **81.22** | 76.3 | 77.03 |
|
383 |
+
| STS17 (en-de) | 87.3 | 91.06 | **91.09** |
|
384 |
+
| STS17 (en-tr) | 77.18 | **80.74** | 79.87 |
|
385 |
+
| STS17 (es-en) | **88.24** | 83.09 | 85.53 |
|
386 |
+
| STS17 (es-es) | **88.25** | 84.16 | 87.27 |
|
387 |
+
| STS17 (fr-en) | 88.06 | **91.33** | 90.68 |
|
388 |
+
| STS17 (it-en) | 89.68 | **92.87** | 92.47 |
|
389 |
+
| STS17 (ko-ko) | 83.69 | **97.67** | 97.66 |
|
390 |
+
| STS17 (nl-en) | 88.25 | **92.13** | 91.15 |
|
391 |
+
| STS22 (ar) | 58.67 | 58.67 | **62.66** |
|
392 |
+
| STS22 (de) | **60.12** | 52.17 | 57.74 |
|
393 |
+
| STS22 (de-en) | **60.92** | 58.5 | 57.5 |
|
394 |
+
| STS22 (de-fr) | **67.79** | 51.28 | 57.99 |
|
395 |
+
| STS22 (de-pl) | **58.69** | 44.56 | 44.22 |
|
396 |
+
| STS22 (es) | **68.57** | 63.68 | 66.21 |
|
397 |
+
| STS22 (es-en) | **78.8** | 70.65 | 75.18 |
|
398 |
+
| STS22 (es-it) | **75.04** | 60.88 | 66.25 |
|
399 |
+
| STS22 (fr) | **83.75** | 76.46 | 78.76 |
|
400 |
+
| STS22 (fr-pl) | 84.52 | 84.52 | **84.52** |
|
401 |
+
| STS22 (it) | **79.28** | 66.73 | 68.47 |
|
402 |
+
| STS22 (pl) | 42.08 | 41.18 | **43.36** |
|
403 |
+
| STS22 (pl-en) | **77.5** | 64.35 | 75.11 |
|
404 |
+
| STS22 (ru) | **61.71** | 58.59 | 58.67 |
|
405 |
+
| STS22 (tr) | **68.72** | 57.52 | 63.84 |
|
406 |
+
| STS22 (zh-en) | **71.88** | 60.69 | 65.37 |
|
407 |
+
| STSb | 89.86 | 95.05 | **95.15** |
|
408 |
+
|
409 |
+
**Bold** indicates the best result in each row.
|
410 |
+
|
411 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
412 |
+
|
413 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
414 |
+
|
415 |
+
## Model Details
|
416 |
+
|
417 |
+
### Model Description
|
418 |
+
- **Model Type:** Sentence Transformer
|
419 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
|
420 |
+
- **Maximum Sequence Length:** 128 tokens
|
421 |
+
- **Output Dimensionality:** 768 tokens
|
422 |
+
- **Similarity Function:** Cosine Similarity
|
423 |
+
<!-- - **Training Dataset:** Unknown -->
|
424 |
+
<!-- - **Language:** Unknown -->
|
425 |
+
<!-- - **License:** Unknown -->
|
426 |
+
|
427 |
+
### Model Sources
|
428 |
+
|
429 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
430 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
431 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
432 |
+
|
433 |
+
### Full Model Architecture
|
434 |
+
|
435 |
+
```
|
436 |
+
SentenceTransformer(
|
437 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
438 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
439 |
+
)
|
440 |
+
```
|
441 |
+
|
442 |
+
## Usage
|
443 |
+
|
444 |
+
### Direct Usage (Sentence Transformers)
|
445 |
+
|
446 |
+
First install the Sentence Transformers library:
|
447 |
+
|
448 |
+
```bash
|
449 |
+
pip install -U sentence-transformers
|
450 |
+
```
|
451 |
+
|
452 |
+
Then you can load this model and run inference.
|
453 |
+
```python
|
454 |
+
from sentence_transformers import SentenceTransformer
|
455 |
+
|
456 |
+
# Download from the 🤗 Hub
|
457 |
+
model = SentenceTransformer("Gameselo/STS-multilingual-mpnet-base-v2")
|
458 |
+
# Run inference
|
459 |
+
sentences = [
|
460 |
+
'一个女人正在洗澡。',
|
461 |
+
'A woman is taking a bath.',
|
462 |
+
'En jente børster håret sitt',
|
463 |
+
]
|
464 |
+
embeddings = model.encode(sentences)
|
465 |
+
print(embeddings.shape)
|
466 |
+
# [3, 768]
|
467 |
+
|
468 |
+
# Get the similarity scores for the embeddings
|
469 |
+
similarities = model.similarity(embeddings, embeddings)
|
470 |
+
print(similarities.shape)
|
471 |
+
# [3, 3]
|
472 |
+
```
|
473 |
+
|
474 |
+
<!--
|
475 |
+
### Direct Usage (Transformers)
|
476 |
+
|
477 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
478 |
+
|
479 |
+
</details>
|
480 |
+
-->
|
481 |
+
|
482 |
+
<!--
|
483 |
+
### Downstream Usage (Sentence Transformers)
|
484 |
+
|
485 |
+
You can finetune this model on your own dataset.
|
486 |
+
|
487 |
+
<details><summary>Click to expand</summary>
|
488 |
+
|
489 |
+
</details>
|
490 |
+
-->
|
491 |
+
|
492 |
+
<!--
|
493 |
+
### Out-of-Scope Use
|
494 |
+
|
495 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
496 |
+
-->
|
497 |
+
|
498 |
+
## Evaluation
|
499 |
+
|
500 |
+
### Metrics
|
501 |
+
|
502 |
+
#### Semantic Similarity
|
503 |
+
* Dataset: `sts-dev`
|
504 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
505 |
+
|
506 |
+
| Metric | Value |
|
507 |
+
|:--------------------|:-----------|
|
508 |
+
| pearson_cosine | 0.9551 |
|
509 |
+
| **spearman_cosine** | **0.9593** |
|
510 |
+
| pearson_manhattan | 0.927 |
|
511 |
+
| spearman_manhattan | 0.9383 |
|
512 |
+
| pearson_euclidean | 0.9278 |
|
513 |
+
| spearman_euclidean | 0.9394 |
|
514 |
+
| pearson_dot | 0.876 |
|
515 |
+
| spearman_dot | 0.8865 |
|
516 |
+
| pearson_max | 0.9551 |
|
517 |
+
| spearman_max | 0.9593 |
|
518 |
+
|
519 |
+
#### Evalutation results vs SOTA results
|
520 |
+
* Dataset: `sts-test`
|
521 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
522 |
+
|
523 |
+
| Metric | Value |
|
524 |
+
|:--------------------|:-----------|
|
525 |
+
| pearson_cosine | 0.948 |
|
526 |
+
| **spearman_cosine** | **0.9515** |
|
527 |
+
| pearson_manhattan | 0.9252 |
|
528 |
+
| spearman_manhattan | 0.9352 |
|
529 |
+
| pearson_euclidean | 0.9258 |
|
530 |
+
| spearman_euclidean | 0.9364 |
|
531 |
+
| pearson_dot | 0.8443 |
|
532 |
+
| spearman_dot | 0.8435 |
|
533 |
+
| pearson_max | 0.948 |
|
534 |
+
| spearman_max | 0.9515 |
|
535 |
+
|
536 |
+
<!--
|
537 |
+
## Bias, Risks and Limitations
|
538 |
+
|
539 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
540 |
+
-->
|
541 |
+
|
542 |
+
<!--
|
543 |
+
### Recommendations
|
544 |
+
|
545 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
546 |
+
-->
|
547 |
+
|
548 |
+
## Training Details
|
549 |
+
|
550 |
+
### Training Dataset
|
551 |
+
|
552 |
+
#### Unnamed Dataset
|
553 |
+
|
554 |
+
|
555 |
+
* Size: 226,547 training samples
|
556 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
557 |
+
* Approximate statistics based on the first 1000 samples:
|
558 |
+
| | sentence_0 | sentence_1 | label |
|
559 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
|
560 |
+
| type | string | string | float |
|
561 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 20.05 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.94 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 1.92</li><li>max: 398.6</li></ul> |
|
562 |
+
* Samples:
|
563 |
+
| sentence_0 | sentence_1 | label |
|
564 |
+
|:-------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------|
|
565 |
+
| <code>Bir kadın makineye dikiş dikiyor.</code> | <code>Bir kadın biraz et ekiyor.</code> | <code>0.12</code> |
|
566 |
+
| <code>Snowden 'gegeven vluchtelingendocument door Ecuador'.</code> | <code>Snowden staat op het punt om uit Moskou te vliegen</code> | <code>0.24000000953674316</code> |
|
567 |
+
| <code>Czarny pies idzie mostem przez wodę</code> | <code>Czarny pies nie idzie mostem przez wodę</code> | <code>0.74000000954</code> |
|
568 |
+
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
|
569 |
+
```json
|
570 |
+
{
|
571 |
+
"scale": 20.0,
|
572 |
+
"similarity_fct": "pairwise_angle_sim"
|
573 |
+
}
|
574 |
+
```
|
575 |
+
|
576 |
+
### Training Hyperparameters
|
577 |
+
#### Non-Default Hyperparameters
|
578 |
+
|
579 |
+
- `per_device_train_batch_size`: 256
|
580 |
+
- `per_device_eval_batch_size`: 256
|
581 |
+
- `num_train_epochs`: 10
|
582 |
+
- `multi_dataset_batch_sampler`: round_robin
|
583 |
+
|
584 |
+
#### All Hyperparameters
|
585 |
+
<details><summary>Click to expand</summary>
|
586 |
+
|
587 |
+
- `overwrite_output_dir`: False
|
588 |
+
- `do_predict`: False
|
589 |
+
- `prediction_loss_only`: True
|
590 |
+
- `per_device_train_batch_size`: 256
|
591 |
+
- `per_device_eval_batch_size`: 256
|
592 |
+
- `per_gpu_train_batch_size`: None
|
593 |
+
- `per_gpu_eval_batch_size`: None
|
594 |
+
- `gradient_accumulation_steps`: 1
|
595 |
+
- `eval_accumulation_steps`: None
|
596 |
+
- `learning_rate`: 5e-05
|
597 |
+
- `weight_decay`: 0.0
|
598 |
+
- `adam_beta1`: 0.9
|
599 |
+
- `adam_beta2`: 0.999
|
600 |
+
- `adam_epsilon`: 1e-08
|
601 |
+
- `max_grad_norm`: 1
|
602 |
+
- `num_train_epochs`: 10
|
603 |
+
- `max_steps`: -1
|
604 |
+
- `lr_scheduler_type`: linear
|
605 |
+
- `lr_scheduler_kwargs`: {}
|
606 |
+
- `warmup_ratio`: 0.0
|
607 |
+
- `warmup_steps`: 0
|
608 |
+
- `log_level`: passive
|
609 |
+
- `log_level_replica`: warning
|
610 |
+
- `log_on_each_node`: True
|
611 |
+
- `logging_nan_inf_filter`: True
|
612 |
+
- `save_safetensors`: True
|
613 |
+
- `save_on_each_node`: False
|
614 |
+
- `save_only_model`: False
|
615 |
+
- `no_cuda`: False
|
616 |
+
- `use_cpu`: False
|
617 |
+
- `use_mps_device`: False
|
618 |
+
- `seed`: 42
|
619 |
+
- `data_seed`: None
|
620 |
+
- `jit_mode_eval`: False
|
621 |
+
- `use_ipex`: False
|
622 |
+
- `bf16`: False
|
623 |
+
- `fp16`: False
|
624 |
+
- `fp16_opt_level`: O1
|
625 |
+
- `half_precision_backend`: auto
|
626 |
+
- `bf16_full_eval`: False
|
627 |
+
- `fp16_full_eval`: False
|
628 |
+
- `tf32`: None
|
629 |
+
- `local_rank`: 0
|
630 |
+
- `ddp_backend`: None
|
631 |
+
- `tpu_num_cores`: None
|
632 |
+
- `tpu_metrics_debug`: False
|
633 |
+
- `debug`: []
|
634 |
+
- `dataloader_drop_last`: False
|
635 |
+
- `dataloader_num_workers`: 0
|
636 |
+
- `dataloader_prefetch_factor`: None
|
637 |
+
- `past_index`: -1
|
638 |
+
- `disable_tqdm`: False
|
639 |
+
- `remove_unused_columns`: True
|
640 |
+
- `label_names`: None
|
641 |
+
- `load_best_model_at_end`: False
|
642 |
+
- `ignore_data_skip`: False
|
643 |
+
- `fsdp`: []
|
644 |
+
- `fsdp_min_num_params`: 0
|
645 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
646 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
647 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
648 |
+
- `deepspeed`: None
|
649 |
+
- `label_smoothing_factor`: 0.0
|
650 |
+
- `optim`: adamw_torch
|
651 |
+
- `optim_args`: None
|
652 |
+
- `adafactor`: False
|
653 |
+
- `group_by_length`: False
|
654 |
+
- `length_column_name`: length
|
655 |
+
- `ddp_find_unused_parameters`: None
|
656 |
+
- `ddp_bucket_cap_mb`: None
|
657 |
+
- `ddp_broadcast_buffers`: False
|
658 |
+
- `dataloader_pin_memory`: True
|
659 |
+
- `dataloader_persistent_workers`: False
|
660 |
+
- `skip_memory_metrics`: True
|
661 |
+
- `use_legacy_prediction_loop`: False
|
662 |
+
- `push_to_hub`: False
|
663 |
+
- `resume_from_checkpoint`: None
|
664 |
+
- `hub_model_id`: None
|
665 |
+
- `hub_strategy`: every_save
|
666 |
+
- `hub_private_repo`: False
|
667 |
+
- `hub_always_push`: False
|
668 |
+
- `gradient_checkpointing`: False
|
669 |
+
- `gradient_checkpointing_kwargs`: None
|
670 |
+
- `include_inputs_for_metrics`: False
|
671 |
+
- `eval_do_concat_batches`: True
|
672 |
+
- `fp16_backend`: auto
|
673 |
+
- `push_to_hub_model_id`: None
|
674 |
+
- `push_to_hub_organization`: None
|
675 |
+
- `mp_parameters`:
|
676 |
+
- `auto_find_batch_size`: False
|
677 |
+
- `full_determinism`: False
|
678 |
+
- `torchdynamo`: None
|
679 |
+
- `ray_scope`: last
|
680 |
+
- `ddp_timeout`: 1800
|
681 |
+
- `torch_compile`: False
|
682 |
+
- `torch_compile_backend`: None
|
683 |
+
- `torch_compile_mode`: None
|
684 |
+
- `dispatch_batches`: None
|
685 |
+
- `split_batches`: None
|
686 |
+
- `include_tokens_per_second`: False
|
687 |
+
- `include_num_input_tokens_seen`: False
|
688 |
+
- `neftune_noise_alpha`: None
|
689 |
+
- `optim_target_modules`: None
|
690 |
+
- `batch_sampler`: batch_sampler
|
691 |
+
- `multi_dataset_batch_sampler`: round_robin
|
692 |
+
|
693 |
+
</details>
|
694 |
+
|
695 |
+
### Training Logs
|
696 |
+
| Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|
697 |
+
|:------:|:----:|:-------------:|:-----------------------:|:------------------------:|
|
698 |
+
| 0.5650 | 500 | 10.9426 | - | - |
|
699 |
+
| 1.0 | 885 | - | 0.9202 | - |
|
700 |
+
| 1.1299 | 1000 | 9.7184 | - | - |
|
701 |
+
| 1.6949 | 1500 | 9.5348 | - | - |
|
702 |
+
| 2.0 | 1770 | - | 0.9400 | - |
|
703 |
+
| 2.2599 | 2000 | 9.4412 | - | - |
|
704 |
+
| 2.8249 | 2500 | 9.3097 | - | - |
|
705 |
+
| 3.0 | 2655 | - | 0.9489 | - |
|
706 |
+
| 3.3898 | 3000 | 9.2357 | - | - |
|
707 |
+
| 3.9548 | 3500 | 9.1594 | - | - |
|
708 |
+
| 4.0 | 3540 | - | 0.9528 | - |
|
709 |
+
| 4.5198 | 4000 | 9.0963 | - | - |
|
710 |
+
| 5.0 | 4425 | - | 0.9553 | - |
|
711 |
+
| 5.0847 | 4500 | 9.0382 | - | - |
|
712 |
+
| 5.6497 | 5000 | 8.9837 | - | - |
|
713 |
+
| 6.0 | 5310 | - | 0.9567 | - |
|
714 |
+
| 6.2147 | 5500 | 8.9403 | - | - |
|
715 |
+
| 6.7797 | 6000 | 8.8841 | - | - |
|
716 |
+
| 7.0 | 6195 | - | 0.9581 | - |
|
717 |
+
| 7.3446 | 6500 | 8.8513 | - | - |
|
718 |
+
| 7.9096 | 7000 | 8.81 | - | - |
|
719 |
+
| 8.0 | 7080 | - | 0.9582 | - |
|
720 |
+
| 8.4746 | 7500 | 8.8069 | - | - |
|
721 |
+
| 9.0 | 7965 | - | 0.9589 | - |
|
722 |
+
| 9.0395 | 8000 | 8.7616 | - | - |
|
723 |
+
| 9.6045 | 8500 | 8.7521 | - | - |
|
724 |
+
| 10.0 | 8850 | - | 0.9593 | 0.6266 |
|
725 |
+
|
726 |
+
|
727 |
+
### Framework Versions
|
728 |
+
- Python: 3.9.7
|
729 |
+
- Sentence Transformers: 3.0.0
|
730 |
+
- Transformers: 4.40.1
|
731 |
+
- PyTorch: 2.3.0+cu121
|
732 |
+
- Accelerate: 0.29.3
|
733 |
+
- Datasets: 2.19.0
|
734 |
+
- Tokenizers: 0.19.1
|
735 |
+
|
736 |
+
## Citation
|
737 |
+
|
738 |
+
### BibTeX
|
739 |
+
|
740 |
+
#### Sentence Transformers
|
741 |
+
```bibtex
|
742 |
+
@inproceedings{reimers-2019-sentence-bert,
|
743 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
744 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
745 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
746 |
+
month = "11",
|
747 |
+
year = "2019",
|
748 |
+
publisher = "Association for Computational Linguistics",
|
749 |
+
url = "https://arxiv.org/abs/1908.10084",
|
750 |
+
}
|
751 |
+
```
|
752 |
+
|
753 |
+
#### AnglELoss
|
754 |
+
```bibtex
|
755 |
+
@misc{li2023angleoptimized,
|
756 |
+
title={AnglE-optimized Text Embeddings},
|
757 |
+
author={Xianming Li and Jing Li},
|
758 |
+
year={2023},
|
759 |
+
eprint={2309.12871},
|
760 |
+
archivePrefix={arXiv},
|
761 |
+
primaryClass={cs.CL}
|
762 |
+
}
|
763 |
+
```
|
764 |
+
|
765 |
+
<!--
|
766 |
+
## Glossary
|
767 |
+
|
768 |
+
*Clearly define terms in order to be accessible across audiences.*
|
769 |
+
-->
|
770 |
+
|
771 |
+
<!--
|
772 |
+
## Model Card Authors
|
773 |
+
|
774 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
775 |
+
-->
|
776 |
+
|
777 |
+
<!--
|
778 |
+
## Model Card Contact
|
779 |
+
|
780 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
781 |
+
-->
|
sts-multilingual-mpnet-base-v2.Q2_K.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18d51123062246c211623dc192a22139b2b47c0a31c88544342a04040d87c69f
|
3 |
+
size 198577088
|
sts-multilingual-mpnet-base-v2.Q3_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11f24fe8f17d8aa13b38fdfe3cbe256a81a8386ee5c856e73b21587e7325de33
|
3 |
+
size 208677824
|
sts-multilingual-mpnet-base-v2.Q4_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc8f572368b5cbd3431211301c9f8f2d22d4ee118eea6e1adba5fce3f733d9f3
|
3 |
+
size 218732480
|
sts-multilingual-mpnet-base-v2.Q5_K_M.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74d720cd704b59dd8208b3aa72b32bf044f6a1af6aed468b62d72e5ae8c2f4c1
|
3 |
+
size 227137472
|
sts-multilingual-mpnet-base-v2.Q6_K.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e803d82b7da897feca2564d0c7479b5138fa0c48923b639100e5c3b6e4895cb
|
3 |
+
size 236067776
|
sts-multilingual-mpnet-base-v2.Q8_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d14500c6efe5444f3c49872490073474d2c40e68d69f8b58071e4b1c14a748c8
|
3 |
+
size 303138240
|
sts-multilingual-mpnet-base-v2.bf16.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24f861fafd5e8fd6a500d6650ff0c0c2800bbe6de9d62a972381ca58cd88a021
|
3 |
+
size 562765920
|