File size: 2,129 Bytes
44ba678
 
 
 
 
 
 
78a5b7b
44ba678
 
 
 
 
 
78a5b7b
44ba678
5319d6f
44ba678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: finetuned-phi2-financial-sentiment-analysis
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-phi2-financial-sentiment-analysis

This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the FinancialPhraseBank dataset. The FinancialPhraseBank dataset is a comprehensive collection that captures the sentiments of financial news headlines from the viewpoint of a retail investor. Comprising two key columns, namely "Sentiment" and "News Headline," the dataset effectively classifies sentiments as either negative, neutral, or positive. This structured dataset serves as a valuable resource for analyzing and understanding the complex dynamics of sentiment in the domain of financial news.
It achieves the following results on the evaluation set:
- Loss: 1.4052

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8067        | 1.0   | 112  | 1.5200          |
| 1.5055        | 2.0   | 225  | 1.4345          |
| 1.5221        | 3.0   | 337  | 1.4083          |
| 1.4956        | 3.98  | 448  | 1.4052          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.38.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0