Maykeye
commited on
Commit
·
4d5aebb
1
Parent(s):
61e27ee
Initial commit
Browse files- README.md +28 -0
- backup/do_backup.py +21 -0
- backup/step-1-10300.bin +3 -0
- config.json +22 -0
- demo.py +15 -0
- generation_config.json +7 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +31 -0
- train.ipynb +777 -0
- valid.py +52 -0
README.md
CHANGED
@@ -1,3 +1,31 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
This is a first version of recreating roneneldan/TinyStories-1M but using Llama architecture.
|
5 |
+
|
6 |
+
* Full training process is included in the notebook train.ipynb. Recreating it as simple as downloading
|
7 |
+
TinyStoriesV2-GPT4-train.txt and TinyStoriesV2-GPT4-valid.txt in the same folder with the notebook and running
|
8 |
+
the cells. Validation content is not used by the script so you put anythin in
|
9 |
+
|
10 |
+
* Backup directory has a script do_backup that I used to copy weights from remote machine to local.
|
11 |
+
Weight are generated too quickly, so by the time script copied weihgt N+1
|
12 |
+
|
13 |
+
* This is extremely PoC version. Training truncates stories that are longer than context size and doesn't use
|
14 |
+
any sliding window to train story not from the start
|
15 |
+
|
16 |
+
* Training took approximately 9 hours (3 hours per epoch) on 40GB A100. ~30GB VRAM was used
|
17 |
+
|
18 |
+
* I use tokenizer from open_llama_3b. However I had troubles with it locally(https://github.com/openlm-research/open_llama/issues/69).
|
19 |
+
I had no troubles on the cloud machine with preninstalled libraries.
|
20 |
+
|
21 |
+
* Demo script is demo.py
|
22 |
+
|
23 |
+
* Validation script is provided: valid.py. use it like `python valid.py path/to/TinyStoriesV2-GPT4-valid.txt [optional-model-id-or-path]`:
|
24 |
+
After training I decided that it's not necessary to beat validation into chunks
|
25 |
+
|
26 |
+
* Also this version uses very stupid caching mechinsm to shuffle stories for training: it keeps cache of N recently loaded chunks
|
27 |
+
so if random shuffle asks for a story, it may use cache or load chunk.
|
28 |
+
Training dataset is too small, so in next versions I will get rid of it.
|
29 |
+
|
30 |
+
|
31 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
backup/do_backup.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
from pathlib import Path
|
3 |
+
import time
|
4 |
+
|
5 |
+
copied = []
|
6 |
+
while True:
|
7 |
+
existing = [x.name for x in Path(".").glob("*.bin")]
|
8 |
+
copy_from = [x for x in Path("/home/fella/mnt/selectel/tiny-llama/").glob("*.bin")]
|
9 |
+
for file in copy_from:
|
10 |
+
if file.name not in existing:
|
11 |
+
print(file)
|
12 |
+
try:
|
13 |
+
shutil.copy(file, file.name)
|
14 |
+
copied.append(file.name)
|
15 |
+
if len(copied) > 6:
|
16 |
+
delete_me = copied.pop(0)
|
17 |
+
Path(delete_me).unlink()
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Skipping {file.name}: {e}")
|
20 |
+
pass
|
21 |
+
time.sleep(15)
|
backup/step-1-10300.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6ec1c440a393eb0cce4c215de321efa232fb77a549cc85bd98e64a635ca28d9
|
3 |
+
size 9275989
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 64,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 256,
|
11 |
+
"max_position_embeddings": 2048,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_hidden_layers": 8,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"rms_norm_eps": 1e-06,
|
17 |
+
"tie_word_embeddings": false,
|
18 |
+
"torch_dtype": "bfloat16",
|
19 |
+
"transformers_version": "4.30.2",
|
20 |
+
"use_cache": true,
|
21 |
+
"vocab_size": 32000
|
22 |
+
}
|
demo.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
|
5 |
+
model_id = os.getcwd()
|
6 |
+
if len(sys.argv) > 1:
|
7 |
+
model_id = sys.argv[1]
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).cuda().bfloat16()
|
11 |
+
prompt = "Lily picked up a flower."
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False).to('cuda')
|
13 |
+
out = model.generate(**inputs, max_new_tokens=80).ravel()
|
14 |
+
out = tokenizer.decode(out)
|
15 |
+
print(out)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.30.2"
|
7 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae959aaff509d66f9dd85c53f16481463286950a21e0349c7793f8412fc4a094
|
3 |
+
size 9269994
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab1b681ec7fc02fed5edd3026687d7a692a918c4dd8e150ca2e3994a6229843b
|
3 |
+
size 534194
|
tokenizer_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"__type": "AddedToken",
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"clean_up_tokenization_spaces": false,
|
11 |
+
"eos_token": {
|
12 |
+
"__type": "AddedToken",
|
13 |
+
"content": "</s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"model_max_length": 2048,
|
20 |
+
"pad_token": null,
|
21 |
+
"sp_model_kwargs": {},
|
22 |
+
"tokenizer_class": "LlamaTokenizer",
|
23 |
+
"unk_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<unk>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
train.ipynb
ADDED
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "f41486ad",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"NVIDIA A100-PCIE-40GB\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"# step 0. Preliminary\n",
|
19 |
+
"import torch\n",
|
20 |
+
"# check that cuda doesn't crash on us\n",
|
21 |
+
"print(torch.cuda.get_device_name())\n",
|
22 |
+
"# check that transformers installed\n",
|
23 |
+
"import transformers"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"id": "ffd19cfb",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"EPOCHS=3"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 3,
|
39 |
+
"id": "3a91ef1f",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"# Step 1. Preparing the training\n",
|
44 |
+
"# First ensure that required files are here\n",
|
45 |
+
"from pathlib import Path\n",
|
46 |
+
"assert Path(\"TinyStoriesV2-GPT4-train.txt\").exists()\n",
|
47 |
+
"assert Path(\"TinyStoriesV2-GPT4-valid.txt\").exists()"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 4,
|
53 |
+
"id": "56b046d5",
|
54 |
+
"metadata": {},
|
55 |
+
"outputs": [],
|
56 |
+
"source": [
|
57 |
+
"# Then prepare directories\n",
|
58 |
+
"Path(\"chunks.txt/train\").mkdir(parents=True, exist_ok=True)\n",
|
59 |
+
"Path(\"chunks.tensors/train\").mkdir(parents=True, exist_ok=True)\n",
|
60 |
+
"Path(\"chunks.txt/valid\").mkdir(parents=True, exist_ok=True)\n",
|
61 |
+
"Path(\"chunks.tensors/valid\").mkdir(parents=True, exist_ok=True)"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": 5,
|
67 |
+
"id": "1bddb2ee",
|
68 |
+
"metadata": {},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"# Then prepare method to split one text to several\n",
|
72 |
+
"from multiprocessing.pool import Pool\n",
|
73 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
74 |
+
"import os\n",
|
75 |
+
"_chunk_me = None\n",
|
76 |
+
"def extract_chunk(chunk):\n",
|
77 |
+
" split, i, chunk_from, chunk_to = chunk\n",
|
78 |
+
" chunk = _chunk_me[chunk_from:chunk_to].strip() \n",
|
79 |
+
" name = f\"chunks.txt/{split}/chunk-{i+1}.txt\"\n",
|
80 |
+
" with open(name, \"w\") as f:\n",
|
81 |
+
" f.write(chunk)\n",
|
82 |
+
" return name\n",
|
83 |
+
"\n",
|
84 |
+
"def split_to_text_chunks(split:str, chunk_size = 16*1024*1024, max_workers=None):\n",
|
85 |
+
" global _chunk_me #text is too chunky to pass as argument. storing as global so fork() can take care of it\n",
|
86 |
+
" print(f\"reading {split}\")\n",
|
87 |
+
" text = _chunk_me = Path(f\"./TinyStoriesV2-GPT4-{split}.txt\").read_text()\n",
|
88 |
+
" offsets = [] \n",
|
89 |
+
" delimiter = \"<|endoftext|>\"\n",
|
90 |
+
" i=0\n",
|
91 |
+
" while i < len(text): \n",
|
92 |
+
" offsets.append(i)\n",
|
93 |
+
" i += chunk_size\n",
|
94 |
+
" i = text.find(delimiter, i)\n",
|
95 |
+
" if i < 0:\n",
|
96 |
+
" break\n",
|
97 |
+
" i += len(delimiter)\n",
|
98 |
+
" offsets.append(len(text))\n",
|
99 |
+
" chunks = [(split, i, start,end) for (i, (start, end)) in enumerate(zip(offsets[:-1], offsets[1:]))]\n",
|
100 |
+
" \n",
|
101 |
+
" print(\"writing\")\n",
|
102 |
+
" process_map(extract_chunk, chunks, max_workers=max_workers)\n",
|
103 |
+
" "
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": 7,
|
109 |
+
"id": "e60017ee",
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [
|
112 |
+
{
|
113 |
+
"name": "stdout",
|
114 |
+
"output_type": "stream",
|
115 |
+
"text": [
|
116 |
+
"Assuming split has finished already\n"
|
117 |
+
]
|
118 |
+
}
|
119 |
+
],
|
120 |
+
"source": [
|
121 |
+
"# Prepare text of train split\n",
|
122 |
+
"if not Path(\"chunks.txt/train/chunk-133.txt\").exists():\n",
|
123 |
+
" split_to_text_chunks(\"train\")\n",
|
124 |
+
"else:\n",
|
125 |
+
" print(\"Assuming split has finished already\")"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 9,
|
131 |
+
"id": "e9b7effe",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Assuming split has finished already\n"
|
139 |
+
]
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"# Prepare text of valid split\n",
|
144 |
+
"if not Path(\"chunks.txt/valid/chunk-2.txt\").exists():\n",
|
145 |
+
" split_to_text_chunks(\"valid\") \n",
|
146 |
+
"else:\n",
|
147 |
+
" print(\"Assuming split has finished already\")"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 10,
|
153 |
+
"id": "b4706f24",
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"# Step 2. Prepare OpenLLAMA tokenizer. \n",
|
158 |
+
"#Needed to be done once(TODO: add code to load tokenizer?)\n",
|
159 |
+
"from transformers import AutoTokenizer\n",
|
160 |
+
"import os\n",
|
161 |
+
"if not Path('tokenizer.json').exists(): \n",
|
162 |
+
" try:\n",
|
163 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openlm-research/open_llama_3b\")\n",
|
164 |
+
" except:\n",
|
165 |
+
" os.environ[\"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION\"]=\"python\" \n",
|
166 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openlm-research/open_llama_3b\")\n",
|
167 |
+
" tokenizer.save_pretrained(\".\")\n",
|
168 |
+
" del os.environ[\"PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION\"]\n",
|
169 |
+
"tokenizer = AutoTokenizer.from_pretrained(\".\")"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"cell_type": "code",
|
174 |
+
"execution_count": 11,
|
175 |
+
"id": "f9c935b0",
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": [
|
179 |
+
"# Step 3. Preparing to tokenize each text chunk\n",
|
180 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
181 |
+
"def tokenize_file(filename:Path):\n",
|
182 |
+
" text = Path.read_text(filename)\n",
|
183 |
+
" stories = text.split(\"<|endoftext|>\")\n",
|
184 |
+
" result = []\n",
|
185 |
+
" while stories:\n",
|
186 |
+
" story = stories.pop(0).strip()\n",
|
187 |
+
" tokenized = tokenizer(story, max_length=None).input_ids\n",
|
188 |
+
" tokenized.append(tokenizer.eos_token_id)\n",
|
189 |
+
" result.append(torch.tensor(tokenized))\n",
|
190 |
+
" output_name = str(filename).replace(\".txt\", \".tensors\")\n",
|
191 |
+
" torch.save(result, output_name)\n",
|
192 |
+
"\n",
|
193 |
+
"def tokenize_split(split, max_workers=None):\n",
|
194 |
+
" to_process = list(Path(f\"chunks.txt/{split}\").glob(\"*\")) \n",
|
195 |
+
" process_map(tokenize_file, to_process, max_workers=max_workers)\n",
|
196 |
+
" "
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 12,
|
202 |
+
"id": "95257f12",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "stdout",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"Assuming train was tokenized already\n"
|
210 |
+
]
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"source": [
|
214 |
+
"# processing train(this can take several minutes)\n",
|
215 |
+
"if not Path(\"chunks.tensors/train/chunk-133.tensors\").exists():\n",
|
216 |
+
" tokenize_split(\"train\")\n",
|
217 |
+
"else:\n",
|
218 |
+
" print(\"Assuming train was tokenized already\")"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 13,
|
224 |
+
"id": "bbbe4599",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [
|
227 |
+
{
|
228 |
+
"name": "stdout",
|
229 |
+
"output_type": "stream",
|
230 |
+
"text": [
|
231 |
+
"Assuming valid was tokenized already\n"
|
232 |
+
]
|
233 |
+
}
|
234 |
+
],
|
235 |
+
"source": [
|
236 |
+
"# processing valid(this can take one minutes)\n",
|
237 |
+
"if not Path(\"chunks.tensors/valid/chunk-2.tensors\").exists():\n",
|
238 |
+
" tokenize_split(\"valid\")\n",
|
239 |
+
"else:\n",
|
240 |
+
" print(\"Assuming valid was tokenized already\")"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"cell_type": "code",
|
245 |
+
"execution_count": 14,
|
246 |
+
"id": "a31a4aa7",
|
247 |
+
"metadata": {},
|
248 |
+
"outputs": [
|
249 |
+
{
|
250 |
+
"name": "stdout",
|
251 |
+
"output_type": "stream",
|
252 |
+
"text": [
|
253 |
+
"Resetting [PAD] to [EOS]\n"
|
254 |
+
]
|
255 |
+
}
|
256 |
+
],
|
257 |
+
"source": [
|
258 |
+
"# Step 4. Training. \n",
|
259 |
+
"# Step 4.1 Preparing tokenizer and setting pad token if it is not set(it is not set)\n",
|
260 |
+
"tokenizer = AutoTokenizer.from_pretrained(\".\")\n",
|
261 |
+
"if not tokenizer.pad_token_id:\n",
|
262 |
+
" tokenizer.pad_token_id = tokenizer.eos_token_id\n",
|
263 |
+
" print(\"Resetting [PAD] to [EOS]\")"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": 18,
|
269 |
+
"id": "f677c9c0",
|
270 |
+
"metadata": {
|
271 |
+
"scrolled": true
|
272 |
+
},
|
273 |
+
"outputs": [],
|
274 |
+
"source": [
|
275 |
+
"# Step 4.2. Preparing model\n",
|
276 |
+
"from transformers.models.llama.modeling_llama import LlamaConfig, LlamaForCausalLM\n",
|
277 |
+
"\n",
|
278 |
+
"tiny_llama = LlamaConfig(\n",
|
279 |
+
" hidden_size=64, \n",
|
280 |
+
" vocab_size=tokenizer.vocab_size,\n",
|
281 |
+
" intermediate_size=256, \n",
|
282 |
+
" num_attention_heads=16, \n",
|
283 |
+
" num_hidden_layers=8)\n",
|
284 |
+
"\n",
|
285 |
+
"torch.manual_seed(11010)\n",
|
286 |
+
"torch.cuda.manual_seed(11010)\n",
|
287 |
+
"model = LlamaForCausalLM(tiny_llama).cuda().bfloat16()"
|
288 |
+
]
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"execution_count": 16,
|
293 |
+
"id": "aad9620b",
|
294 |
+
"metadata": {},
|
295 |
+
"outputs": [],
|
296 |
+
"source": [
|
297 |
+
"import functools\n",
|
298 |
+
"import torch.nn.functional as F\n",
|
299 |
+
"from tqdm.contrib.concurrent import process_map\n",
|
300 |
+
"from tqdm.auto import tqdm\n",
|
301 |
+
"\n",
|
302 |
+
"# Step 4.3 Preparing dataset class\n",
|
303 |
+
"def get_file_data_len(filename):\n",
|
304 |
+
" data = torch.load(filename)\n",
|
305 |
+
" return (filename, len(data))\n",
|
306 |
+
"from datasets import Dataset\n",
|
307 |
+
"\n",
|
308 |
+
"CACHE_SIZE = 2000 # There are ~150 train splits. We can fit them in memory, so let's do it\n",
|
309 |
+
"\n",
|
310 |
+
"class TinyDataset(Dataset):\n",
|
311 |
+
" def __init__(self, split: str, populate_cache=True):\n",
|
312 |
+
" print(f\"Reading dataset {split} data\")\n",
|
313 |
+
" self.file_lens = process_map(\n",
|
314 |
+
" get_file_data_len,\n",
|
315 |
+
" list(Path(f\"chunks.tensors/{split}\").glob(\"*\")))\n",
|
316 |
+
" self.file_lens.sort()\n",
|
317 |
+
" if populate_cache:\n",
|
318 |
+
" print(\"Populating a cache\")\n",
|
319 |
+
" for filename, _ in tqdm(self.file_lens):\n",
|
320 |
+
" self.load_tensor_file(filename)\n",
|
321 |
+
"\n",
|
322 |
+
" @functools.lru_cache(maxsize=CACHE_SIZE)\n",
|
323 |
+
" def load_tensor_file(self, filename):\n",
|
324 |
+
" return torch.load(filename)\n",
|
325 |
+
"\n",
|
326 |
+
" def __len__(self):\n",
|
327 |
+
" return sum(x[1] for x in self.file_lens)\n",
|
328 |
+
"\n",
|
329 |
+
" def global_index_to_local(self, i):\n",
|
330 |
+
" for (file, length) in self.file_lens:\n",
|
331 |
+
" if i < length:\n",
|
332 |
+
" return (file, i)\n",
|
333 |
+
" i -= length\n",
|
334 |
+
" raise IndexError(f\"{i} is out-of-bonds, have {len(self)} sample\")\n",
|
335 |
+
"\n",
|
336 |
+
" def __getitem__(self, index):\n",
|
337 |
+
" if torch.is_tensor(index):\n",
|
338 |
+
" index = index.tolist()\n",
|
339 |
+
" if isinstance(index, int):\n",
|
340 |
+
" filename, local_index = self.global_index_to_local(index)\n",
|
341 |
+
" tensors = self.load_tensor_file(filename)\n",
|
342 |
+
" return {\n",
|
343 |
+
" 'input_ids': tensors[local_index]\n",
|
344 |
+
" }\n",
|
345 |
+
" if isinstance(index, list):\n",
|
346 |
+
" data = []\n",
|
347 |
+
" indices = index\n",
|
348 |
+
" for index in indices:\n",
|
349 |
+
" filename, local_index = self.global_index_to_local(index)\n",
|
350 |
+
" tensors = self.load_tensor_file(filename)\n",
|
351 |
+
" data.append(tensors[local_index])\n",
|
352 |
+
"\n",
|
353 |
+
" return {'input_ids': data}\n",
|
354 |
+
"\n",
|
355 |
+
" raise TypeError(f'Invaldi index type {type(index)}')\n",
|
356 |
+
" \n",
|
357 |
+
"def batch_collate(data: list[torch.Tensor]):\n",
|
358 |
+
" max_len = max(len(datum[\"input_ids\"]) for datum in data)\n",
|
359 |
+
" inputs = []\n",
|
360 |
+
" attentions = []\n",
|
361 |
+
" for row in data:\n",
|
362 |
+
" input_ids = row[\"input_ids\"]\n",
|
363 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
364 |
+
" attention_mask[-1] = 0 # don't care about EOS\n",
|
365 |
+
" # Manual padding\n",
|
366 |
+
" to_pad = max_len - len(input_ids)\n",
|
367 |
+
" is_left_pad = tokenizer.padding_side == \"left\"\n",
|
368 |
+
" padding = (is_left_pad * to_pad, (1 - is_left_pad) * to_pad)\n",
|
369 |
+
" input_ids = F.pad(input_ids, padding, value=tokenizer.pad_token_id)\n",
|
370 |
+
" attention_mask = F.pad(attention_mask, padding, value=0)\n",
|
371 |
+
" inputs.append(input_ids)\n",
|
372 |
+
" attentions.append(attention_mask)\n",
|
373 |
+
"\n",
|
374 |
+
" attention_masks = torch.stack(attentions)\n",
|
375 |
+
" input_ids = torch.stack(inputs)\n",
|
376 |
+
" labels = input_ids.clone()\n",
|
377 |
+
"\n",
|
378 |
+
" # disable prediction of the padding\n",
|
379 |
+
" labels[attention_masks == 0] = -100\n",
|
380 |
+
" # enable prediction of an actual EOS\n",
|
381 |
+
" labels[:, -1] = tokenizer.eos_token_id\n",
|
382 |
+
"\n",
|
383 |
+
" return {\n",
|
384 |
+
" 'input_ids': input_ids,\n",
|
385 |
+
" 'attention_mask': attention_masks,\n",
|
386 |
+
" 'labels': labels\n",
|
387 |
+
" }\n",
|
388 |
+
"\n",
|
389 |
+
"def get_max_story_length(ds): \n",
|
390 |
+
" return max(file_len[1] for file_len in ds.file_lens)\n"
|
391 |
+
]
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"cell_type": "code",
|
395 |
+
"execution_count": 17,
|
396 |
+
"id": "2e828afe",
|
397 |
+
"metadata": {},
|
398 |
+
"outputs": [
|
399 |
+
{
|
400 |
+
"name": "stdout",
|
401 |
+
"output_type": "stream",
|
402 |
+
"text": [
|
403 |
+
"Reading dataset train data\n"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"data": {
|
408 |
+
"application/vnd.jupyter.widget-view+json": {
|
409 |
+
"model_id": "8ca542afc1694073af6dcf9ce5f7e13a",
|
410 |
+
"version_major": 2,
|
411 |
+
"version_minor": 0
|
412 |
+
},
|
413 |
+
"text/plain": [
|
414 |
+
" 0%| | 0/133 [00:00<?, ?it/s]"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
"metadata": {},
|
418 |
+
"output_type": "display_data"
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"name": "stdout",
|
422 |
+
"output_type": "stream",
|
423 |
+
"text": [
|
424 |
+
"Populating a cache\n"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"data": {
|
429 |
+
"application/vnd.jupyter.widget-view+json": {
|
430 |
+
"model_id": "8035a75107e84a54870a8c6f15c4100a",
|
431 |
+
"version_major": 2,
|
432 |
+
"version_minor": 0
|
433 |
+
},
|
434 |
+
"text/plain": [
|
435 |
+
" 0%| | 0/133 [00:00<?, ?it/s]"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
"metadata": {},
|
439 |
+
"output_type": "display_data"
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"ename": "AssertionError",
|
443 |
+
"evalue": "WARNIING: split long stories",
|
444 |
+
"output_type": "error",
|
445 |
+
"traceback": [
|
446 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
447 |
+
"\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)",
|
448 |
+
"Cell \u001b[0;32mIn[17], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m tokenizer\u001b[38;5;241m.\u001b[39mpadding_side \u001b[38;5;129;01min\u001b[39;00m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mleft\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mright\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 2\u001b[0m train_ds \u001b[38;5;241m=\u001b[39m TinyDataset(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrain\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m get_max_story_length(train_ds) \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m tokenizer\u001b[38;5;241m.\u001b[39mmodel_max_length, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWARNIING: split long stories\u001b[39m\u001b[38;5;124m\"\u001b[39m\n",
|
449 |
+
"\u001b[0;31mAssertionError\u001b[0m: WARNIING: split long stories"
|
450 |
+
]
|
451 |
+
}
|
452 |
+
],
|
453 |
+
"source": [
|
454 |
+
"assert tokenizer.padding_side in [\"left\", \"right\"]\n",
|
455 |
+
"train_ds = TinyDataset(\"train\")\n",
|
456 |
+
"assert get_max_story_length(train_ds) <= tokenizer.model_max_length, \"WARNIING: split long stories\""
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": 19,
|
462 |
+
"id": "6412e7c5",
|
463 |
+
"metadata": {},
|
464 |
+
"outputs": [],
|
465 |
+
"source": [
|
466 |
+
"from torch.utils.data import DataLoader\n",
|
467 |
+
"torch.manual_seed(11010)\n",
|
468 |
+
"torch.cuda.manual_seed(11010)\n",
|
469 |
+
"train_dl = DataLoader(train_ds, 16, True, collate_fn=batch_collate)"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": 20,
|
475 |
+
"id": "f3ff5a66",
|
476 |
+
"metadata": {},
|
477 |
+
"outputs": [
|
478 |
+
{
|
479 |
+
"name": "stderr",
|
480 |
+
"output_type": "stream",
|
481 |
+
"text": [
|
482 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mggg4\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"data": {
|
487 |
+
"text/html": [
|
488 |
+
"Tracking run with wandb version 0.15.5"
|
489 |
+
],
|
490 |
+
"text/plain": [
|
491 |
+
"<IPython.core.display.HTML object>"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
"metadata": {},
|
495 |
+
"output_type": "display_data"
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"data": {
|
499 |
+
"text/html": [
|
500 |
+
"Run data is saved locally in <code>/home/mayk/tiny-llama/wandb/run-20230707_181234-rilt4m6f</code>"
|
501 |
+
],
|
502 |
+
"text/plain": [
|
503 |
+
"<IPython.core.display.HTML object>"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
"metadata": {},
|
507 |
+
"output_type": "display_data"
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"data": {
|
511 |
+
"text/html": [
|
512 |
+
"Syncing run <strong><a href='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f' target=\"_blank\">grateful-jazz-4</a></strong> to <a href='https://wandb.ai/ggg4/training-tiny-llama-preview' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
513 |
+
],
|
514 |
+
"text/plain": [
|
515 |
+
"<IPython.core.display.HTML object>"
|
516 |
+
]
|
517 |
+
},
|
518 |
+
"metadata": {},
|
519 |
+
"output_type": "display_data"
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"data": {
|
523 |
+
"text/html": [
|
524 |
+
" View project at <a href='https://wandb.ai/ggg4/training-tiny-llama-preview' target=\"_blank\">https://wandb.ai/ggg4/training-tiny-llama-preview</a>"
|
525 |
+
],
|
526 |
+
"text/plain": [
|
527 |
+
"<IPython.core.display.HTML object>"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
"metadata": {},
|
531 |
+
"output_type": "display_data"
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"data": {
|
535 |
+
"text/html": [
|
536 |
+
" View run at <a href='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f' target=\"_blank\">https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f</a>"
|
537 |
+
],
|
538 |
+
"text/plain": [
|
539 |
+
"<IPython.core.display.HTML object>"
|
540 |
+
]
|
541 |
+
},
|
542 |
+
"metadata": {},
|
543 |
+
"output_type": "display_data"
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"data": {
|
547 |
+
"text/html": [
|
548 |
+
"<button onClick=\"this.nextSibling.style.display='block';this.style.display='none';\">Display W&B run</button><iframe src='https://wandb.ai/ggg4/training-tiny-llama-preview/runs/rilt4m6f?jupyter=true' style='border:none;width:100%;height:420px;display:none;'></iframe>"
|
549 |
+
],
|
550 |
+
"text/plain": [
|
551 |
+
"<wandb.sdk.wandb_run.Run at 0x7f6af8170b50>"
|
552 |
+
]
|
553 |
+
},
|
554 |
+
"execution_count": 20,
|
555 |
+
"metadata": {},
|
556 |
+
"output_type": "execute_result"
|
557 |
+
}
|
558 |
+
],
|
559 |
+
"source": [
|
560 |
+
"# prepare wandb\n",
|
561 |
+
"import wandb\n",
|
562 |
+
"wandb.init(\n",
|
563 |
+
" project=\"training-tiny-llama-preview\",\n",
|
564 |
+
" config={\n",
|
565 |
+
" \"architecture\": \"llama\",\n",
|
566 |
+
" \"dataset\": \"tiny-stories\",\n",
|
567 |
+
" \"epochs\": EPOCHS,\n",
|
568 |
+
" } \n",
|
569 |
+
")"
|
570 |
+
]
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"cell_type": "code",
|
574 |
+
"execution_count": null,
|
575 |
+
"id": "aed7b7a4",
|
576 |
+
"metadata": {},
|
577 |
+
"outputs": [],
|
578 |
+
"source": []
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "code",
|
582 |
+
"execution_count": 21,
|
583 |
+
"id": "166a4a27",
|
584 |
+
"metadata": {},
|
585 |
+
"outputs": [],
|
586 |
+
"source": [
|
587 |
+
"from tqdm.auto import tqdm\n",
|
588 |
+
"def save_imm(epoch, step, saved=[]):\n",
|
589 |
+
" fname = f\"step-{epoch}-{step}.bin\"\n",
|
590 |
+
" torch.save(model.state_dict(), f\"step-{epoch}-{step}.bin\")\n",
|
591 |
+
" saved.append(fname)\n",
|
592 |
+
" if len(saved) > 5:\n",
|
593 |
+
" delete_me = saved.pop(0)\n",
|
594 |
+
" Path(delete_me).unlink(missing_ok=True)\n",
|
595 |
+
"\n",
|
596 |
+
"def epoch_step(epoch, opt):\n",
|
597 |
+
" for i, batch in enumerate(bar := tqdm(train_dl)):\n",
|
598 |
+
" for k in batch:\n",
|
599 |
+
" batch[k] = batch[k].to(device=model.lm_head.weight.device)\n",
|
600 |
+
" \n",
|
601 |
+
" n_batch, n_seq = batch[\"input_ids\"].shape\n",
|
602 |
+
" if n_seq > tokenizer.model_max_length:\n",
|
603 |
+
" assert tokenizer.padding_side == \"right\", \"Left-pad truncation only supported[as model should not see >2k token anyway]\"\n",
|
604 |
+
" batch[\"input_ids\"] = batch[\"input_ids\"][:, -tokenizer.model_max_length]\n",
|
605 |
+
" batch[\"labels\"] = batch[\"labels\"][:, -tokenizer.model_max_length]\n",
|
606 |
+
" batch[\"attention_mask\"] = batch[\"attention_mask\"][:, -tokenizer.model_max_length]\n",
|
607 |
+
" \n",
|
608 |
+
" \n",
|
609 |
+
" loss = model(**batch).loss\n",
|
610 |
+
" loss.backward()\n",
|
611 |
+
" opt.step()\n",
|
612 |
+
" opt.zero_grad()\n",
|
613 |
+
" bar.set_description(f'L:{loss.item():.4f}')\n",
|
614 |
+
" wandb.log({\"loss\": loss.item()})\n",
|
615 |
+
" if (i+1) % 100 == 0:\n",
|
616 |
+
" save_imm(epoch, i+1)\n",
|
617 |
+
" \n",
|
618 |
+
" torch.save(model.state_dict(), f\"epoch-{epoch}.bin\")\n"
|
619 |
+
]
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"cell_type": "code",
|
623 |
+
"execution_count": 22,
|
624 |
+
"id": "ec4943c7",
|
625 |
+
"metadata": {},
|
626 |
+
"outputs": [],
|
627 |
+
"source": [
|
628 |
+
"opt = torch.optim.AdamW(model.parameters(), fused=True)\n"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"cell_type": "code",
|
633 |
+
"execution_count": null,
|
634 |
+
"id": "daae9020",
|
635 |
+
"metadata": {},
|
636 |
+
"outputs": [
|
637 |
+
{
|
638 |
+
"data": {
|
639 |
+
"application/vnd.jupyter.widget-view+json": {
|
640 |
+
"model_id": "f7ab6fe3b99546f49acb0d43888b7ceb",
|
641 |
+
"version_major": 2,
|
642 |
+
"version_minor": 0
|
643 |
+
},
|
644 |
+
"text/plain": [
|
645 |
+
" 0%| | 0/169865 [00:00<?, ?it/s]"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
"metadata": {},
|
649 |
+
"output_type": "display_data"
|
650 |
+
}
|
651 |
+
],
|
652 |
+
"source": [
|
653 |
+
"for e in range(EPOCHS):\n",
|
654 |
+
" epoch_step(e+1, opt)"
|
655 |
+
]
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"cell_type": "code",
|
659 |
+
"execution_count": 45,
|
660 |
+
"id": "87988cf5",
|
661 |
+
"metadata": {},
|
662 |
+
"outputs": [
|
663 |
+
{
|
664 |
+
"name": "stdout",
|
665 |
+
"output_type": "stream",
|
666 |
+
"text": [
|
667 |
+
" total used free shared buff/cache available\r\n",
|
668 |
+
"Mem: 85Gi 1.5Gi 72Gi 8.0Mi 11Gi 83Gi\r\n",
|
669 |
+
"Swap: 0B 0B 0B\r\n"
|
670 |
+
]
|
671 |
+
}
|
672 |
+
],
|
673 |
+
"source": [
|
674 |
+
"!free -h"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"execution_count": 65,
|
680 |
+
"id": "e43eb9f3",
|
681 |
+
"metadata": {},
|
682 |
+
"outputs": [
|
683 |
+
{
|
684 |
+
"name": "stdout",
|
685 |
+
"output_type": "stream",
|
686 |
+
"text": [
|
687 |
+
"Fri Jul 7 17:44:05 2023 \n",
|
688 |
+
"+-----------------------------------------------------------------------------+\n",
|
689 |
+
"| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |\n",
|
690 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
691 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
692 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
693 |
+
"| | | MIG M. |\n",
|
694 |
+
"|===============================+======================+======================|\n",
|
695 |
+
"| 0 NVIDIA A100-PCI... On | 00000000:05:00.0 Off | 0 |\n",
|
696 |
+
"| N/A 30C P0 34W / 250W | 5739MiB / 40960MiB | 0% Default |\n",
|
697 |
+
"| | | Disabled |\n",
|
698 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
699 |
+
" \n",
|
700 |
+
"+-----------------------------------------------------------------------------+\n",
|
701 |
+
"| Processes: |\n",
|
702 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
703 |
+
"| ID ID Usage |\n",
|
704 |
+
"|=============================================================================|\n",
|
705 |
+
"| 0 N/A N/A 13768 C /opt/conda/bin/python 5736MiB |\n",
|
706 |
+
"+-----------------------------------------------------------------------------+\n"
|
707 |
+
]
|
708 |
+
}
|
709 |
+
],
|
710 |
+
"source": [
|
711 |
+
"!nvidia-smi"
|
712 |
+
]
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"cell_type": "code",
|
716 |
+
"execution_count": 73,
|
717 |
+
"id": "0351f57f",
|
718 |
+
"metadata": {},
|
719 |
+
"outputs": [
|
720 |
+
{
|
721 |
+
"data": {
|
722 |
+
"text/plain": [
|
723 |
+
"Parameter containing:\n",
|
724 |
+
"tensor([[ 8.3618e-03, 3.8330e-02, -5.9204e-03, ..., 2.0752e-02,\n",
|
725 |
+
" 4.4861e-03, 1.2512e-02],\n",
|
726 |
+
" [ 3.9978e-03, 2.1118e-02, -3.5645e-02, ..., -1.6846e-02,\n",
|
727 |
+
" 5.0659e-03, -3.8818e-02],\n",
|
728 |
+
" [-1.6928e-05, -1.2756e-02, -1.1536e-02, ..., -1.6235e-02,\n",
|
729 |
+
" 4.8218e-03, -1.4099e-02],\n",
|
730 |
+
" ...,\n",
|
731 |
+
" [-9.8267e-03, -6.8665e-03, 1.0864e-02, ..., -1.0864e-02,\n",
|
732 |
+
" -2.4170e-02, -5.6076e-04],\n",
|
733 |
+
" [-9.5749e-04, 7.3853e-03, 4.9438e-03, ..., 1.2390e-02,\n",
|
734 |
+
" -2.1606e-02, -9.2163e-03],\n",
|
735 |
+
" [ 5.1758e-02, 2.1484e-02, -1.5381e-02, ..., -2.4292e-02,\n",
|
736 |
+
" -3.4912e-02, 3.0823e-03]], device='cuda:0', dtype=torch.bfloat16,\n",
|
737 |
+
" requires_grad=True)"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
"execution_count": 73,
|
741 |
+
"metadata": {},
|
742 |
+
"output_type": "execute_result"
|
743 |
+
}
|
744 |
+
],
|
745 |
+
"source": []
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"cell_type": "code",
|
749 |
+
"execution_count": null,
|
750 |
+
"id": "ace72db5",
|
751 |
+
"metadata": {},
|
752 |
+
"outputs": [],
|
753 |
+
"source": []
|
754 |
+
}
|
755 |
+
],
|
756 |
+
"metadata": {
|
757 |
+
"kernelspec": {
|
758 |
+
"display_name": "Python 3 (ipykernel)",
|
759 |
+
"language": "python",
|
760 |
+
"name": "python3"
|
761 |
+
},
|
762 |
+
"language_info": {
|
763 |
+
"codemirror_mode": {
|
764 |
+
"name": "ipython",
|
765 |
+
"version": 3
|
766 |
+
},
|
767 |
+
"file_extension": ".py",
|
768 |
+
"mimetype": "text/x-python",
|
769 |
+
"name": "python",
|
770 |
+
"nbconvert_exporter": "python",
|
771 |
+
"pygments_lexer": "ipython3",
|
772 |
+
"version": "3.10.10"
|
773 |
+
}
|
774 |
+
},
|
775 |
+
"nbformat": 4,
|
776 |
+
"nbformat_minor": 5
|
777 |
+
}
|
valid.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
|
8 |
+
model_id = os.getcwd()
|
9 |
+
if len(sys.argv) == 2:
|
10 |
+
filename = sys.argv[1]
|
11 |
+
elif len(sys.argv) == 3:
|
12 |
+
filename = sys.argv[1]
|
13 |
+
model_id = sys.argv[2]
|
14 |
+
else:
|
15 |
+
raise Exception("use valid.py <path-to-text> [model-id]")
|
16 |
+
|
17 |
+
text = Path(filename).read_text()
|
18 |
+
stories = text.split("<|endoftext|>")
|
19 |
+
print(len(stories))
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).cuda().bfloat16()
|
22 |
+
|
23 |
+
ctx_size = tokenizer.model_max_length
|
24 |
+
sliding_window = ctx_size // 2
|
25 |
+
|
26 |
+
total_loss = 0.0
|
27 |
+
measurements = 0
|
28 |
+
model.eval()
|
29 |
+
for story in (bar := tqdm(stories)):
|
30 |
+
story = story.strip()
|
31 |
+
tokens = tokenizer(story, add_special_tokens=False).input_ids + [tokenizer.eos_token_id]
|
32 |
+
i = 0
|
33 |
+
while i < len(tokens):
|
34 |
+
current_window = tokens[i:i+ctx_size-1]
|
35 |
+
part_tokens = [tokenizer.bos_token_id] + current_window
|
36 |
+
input_ids = torch.tensor(part_tokens, device="cuda")[None]
|
37 |
+
labels = input_ids.clone()
|
38 |
+
if i:
|
39 |
+
# disable seen tokens
|
40 |
+
labels[:, :-sliding_window] = -100
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
loss = model(input_ids, labels=labels).loss
|
44 |
+
total_loss += loss.item()
|
45 |
+
measurements += 1
|
46 |
+
|
47 |
+
i += len(current_window)
|
48 |
+
bar.set_description(f"L {total_loss/measurements:.4f}")
|
49 |
+
|
50 |
+
print(f"FINAL LOSS: {total_loss/measurements:.4f}")
|
51 |
+
|
52 |
+
|