Prakhar Bhandari
commited on
Commit
·
684e834
1
Parent(s):
f4cb83e
All files added
Browse files
kg_builder/notebooks/kg_creation.ipynb
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.environ['OPENAI_API_KEY'] = \"\"\n",
|
11 |
+
"\n",
|
12 |
+
"import logging\n",
|
13 |
+
"import sys\n",
|
14 |
+
"\n",
|
15 |
+
"logging.basicConfig(\n",
|
16 |
+
" stream=sys.stdout, level=logging.INFO\n",
|
17 |
+
") # logging.DEBUG for more verbose output\n",
|
18 |
+
"\n",
|
19 |
+
"\n",
|
20 |
+
"# define LLM\n",
|
21 |
+
"from llama_index.llms.openai import OpenAI\n",
|
22 |
+
"from llama_index.core import Settings\n",
|
23 |
+
"\n",
|
24 |
+
"Settings.llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\")\n",
|
25 |
+
"Settings.chunk_size = 512"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 21,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"Requirement already satisfied: langchain in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.16)\n",
|
38 |
+
"Requirement already satisfied: neo4j in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (5.19.0)\n",
|
39 |
+
"Requirement already satisfied: openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.23.2)\n",
|
40 |
+
"Requirement already satisfied: wikipedia in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.4.0)\n",
|
41 |
+
"Requirement already satisfied: tiktoken in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.6.0)\n",
|
42 |
+
"Requirement already satisfied: langchain_openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.3)\n",
|
43 |
+
"Requirement already satisfied: PyYAML>=5.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (6.0.1)\n",
|
44 |
+
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.0.29)\n",
|
45 |
+
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (3.9.5)\n",
|
46 |
+
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (4.0.3)\n",
|
47 |
+
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.6.4)\n",
|
48 |
+
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.33)\n",
|
49 |
+
"Requirement already satisfied: langchain-community<0.1,>=0.0.32 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.34)\n",
|
50 |
+
"Requirement already satisfied: langchain-core<0.2.0,>=0.1.42 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.45)\n",
|
51 |
+
"Requirement already satisfied: langchain-text-splitters<0.1,>=0.0.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.1)\n",
|
52 |
+
"Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.49)\n",
|
53 |
+
"Requirement already satisfied: numpy<2,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.26.4)\n",
|
54 |
+
"Requirement already satisfied: pydantic<3,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.7.0)\n",
|
55 |
+
"Requirement already satisfied: requests<3,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.31.0)\n",
|
56 |
+
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (8.2.3)\n",
|
57 |
+
"Requirement already satisfied: pytz in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from neo4j) (2024.1)\n",
|
58 |
+
"Requirement already satisfied: anyio<5,>=3.5.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.3.0)\n",
|
59 |
+
"Requirement already satisfied: distro<2,>=1.7.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.9.0)\n",
|
60 |
+
"Requirement already satisfied: httpx<1,>=0.23.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (0.27.0)\n",
|
61 |
+
"Requirement already satisfied: sniffio in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.3.1)\n",
|
62 |
+
"Requirement already satisfied: tqdm>4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.66.2)\n",
|
63 |
+
"Requirement already satisfied: typing-extensions<5,>=4.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.11.0)\n",
|
64 |
+
"Requirement already satisfied: beautifulsoup4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from wikipedia) (4.12.3)\n",
|
65 |
+
"Requirement already satisfied: regex>=2022.1.18 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from tiktoken) (2024.4.16)\n",
|
66 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
|
67 |
+
"Requirement already satisfied: attrs>=17.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.2.0)\n",
|
68 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.4.1)\n",
|
69 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.5)\n",
|
70 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.4)\n",
|
71 |
+
"Requirement already satisfied: idna>=2.8 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (3.7)\n",
|
72 |
+
"Requirement already satisfied: exceptiongroup>=1.0.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (1.2.1)\n",
|
73 |
+
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (3.21.1)\n",
|
74 |
+
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (0.9.0)\n",
|
75 |
+
"Requirement already satisfied: certifi in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (2024.2.2)\n",
|
76 |
+
"Requirement already satisfied: httpcore==1.* in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (1.0.5)\n",
|
77 |
+
"Requirement already satisfied: h11<0.15,>=0.13 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0)\n",
|
78 |
+
"Requirement already satisfied: jsonpointer>=1.9 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain) (2.4)\n",
|
79 |
+
"Requirement already satisfied: packaging<24.0,>=23.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain-core<0.2.0,>=0.1.42->langchain) (23.2)\n",
|
80 |
+
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.1)\n",
|
81 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (0.6.0)\n",
|
82 |
+
"Requirement already satisfied: pydantic-core==2.18.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (2.18.1)\n",
|
83 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (3.3.2)\n",
|
84 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (2.2.1)\n",
|
85 |
+
"Requirement already satisfied: greenlet!=0.4.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.0.3)\n",
|
86 |
+
"Requirement already satisfied: soupsieve>1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from beautifulsoup4->wikipedia) (2.5)\n",
|
87 |
+
"Requirement already satisfied: mypy-extensions>=0.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain) (1.0.0)\n"
|
88 |
+
]
|
89 |
+
}
|
90 |
+
],
|
91 |
+
"source": [
|
92 |
+
"!pip install langchain neo4j openai wikipedia tiktoken langchain_openai"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 4,
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"from langchain.graphs import Neo4jGraph\n",
|
102 |
+
"\n",
|
103 |
+
"url = \"neo4j+s://2f409740.databases.neo4j.io\"\n",
|
104 |
+
"username =\"neo4j\"\n",
|
105 |
+
"password = \"oe7A9ugxhxcuEtwci8khPIt2TTdz_am9AYDx1r9e9Tw\"\n",
|
106 |
+
"graph = Neo4jGraph(\n",
|
107 |
+
" url=url,\n",
|
108 |
+
" username=username,\n",
|
109 |
+
" password=password\n",
|
110 |
+
")"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 5,
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"from langchain_community.graphs.graph_document import (\n",
|
120 |
+
" Node as BaseNode,\n",
|
121 |
+
" Relationship as BaseRelationship,\n",
|
122 |
+
" GraphDocument,\n",
|
123 |
+
")\n",
|
124 |
+
"from langchain.schema import Document\n",
|
125 |
+
"from typing import List, Dict, Any, Optional\n",
|
126 |
+
"from langchain.pydantic_v1 import Field, BaseModel\n",
|
127 |
+
"\n",
|
128 |
+
"class Property(BaseModel):\n",
|
129 |
+
" \"\"\"A single property consisting of key and value\"\"\"\n",
|
130 |
+
" key: str = Field(..., description=\"key\")\n",
|
131 |
+
" value: str = Field(..., description=\"value\")\n",
|
132 |
+
"\n",
|
133 |
+
"class Node(BaseNode):\n",
|
134 |
+
" properties: Optional[List[Property]] = Field(\n",
|
135 |
+
" None, description=\"List of node properties\")\n",
|
136 |
+
"\n",
|
137 |
+
"class Relationship(BaseRelationship):\n",
|
138 |
+
" properties: Optional[List[Property]] = Field(\n",
|
139 |
+
" None, description=\"List of relationship properties\"\n",
|
140 |
+
" )\n",
|
141 |
+
"\n",
|
142 |
+
"class KnowledgeGraph(BaseModel):\n",
|
143 |
+
" \"\"\"Generate a knowledge graph with entities and relationships.\"\"\"\n",
|
144 |
+
" nodes: List[Node] = Field(\n",
|
145 |
+
" ..., description=\"List of nodes in the knowledge graph\")\n",
|
146 |
+
" rels: List[Relationship] = Field(\n",
|
147 |
+
" ..., description=\"List of relationships in the knowledge graph\"\n",
|
148 |
+
" )"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 6,
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"def format_property_key(s: str) -> str:\n",
|
158 |
+
" words = s.split()\n",
|
159 |
+
" if not words:\n",
|
160 |
+
" return s\n",
|
161 |
+
" first_word = words[0].lower()\n",
|
162 |
+
" capitalized_words = [word.capitalize() for word in words[1:]]\n",
|
163 |
+
" return \"\".join([first_word] + capitalized_words)\n",
|
164 |
+
"\n",
|
165 |
+
"def props_to_dict(props) -> dict:\n",
|
166 |
+
" \"\"\"Convert properties to a dictionary.\"\"\"\n",
|
167 |
+
" properties = {}\n",
|
168 |
+
" if not props:\n",
|
169 |
+
" return properties\n",
|
170 |
+
" for p in props:\n",
|
171 |
+
" properties[format_property_key(p.key)] = p.value\n",
|
172 |
+
" return properties\n",
|
173 |
+
"\n",
|
174 |
+
"def map_to_base_node(node: Node) -> BaseNode:\n",
|
175 |
+
" \"\"\"Map the KnowledgeGraph Node to the base Node.\"\"\"\n",
|
176 |
+
" properties = props_to_dict(node.properties) if node.properties else {}\n",
|
177 |
+
" # Add name property for better Cypher statement generation\n",
|
178 |
+
" properties[\"name\"] = node.id.title()\n",
|
179 |
+
" return BaseNode(\n",
|
180 |
+
" id=node.id.title(), type=node.type.capitalize(), properties=properties\n",
|
181 |
+
" )\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"def map_to_base_relationship(rel: Relationship) -> BaseRelationship:\n",
|
185 |
+
" \"\"\"Map the KnowledgeGraph Relationship to the base Relationship.\"\"\"\n",
|
186 |
+
" source = map_to_base_node(rel.source)\n",
|
187 |
+
" target = map_to_base_node(rel.target)\n",
|
188 |
+
" properties = props_to_dict(rel.properties) if rel.properties else {}\n",
|
189 |
+
" return BaseRelationship(\n",
|
190 |
+
" source=source, target=target, type=rel.type, properties=properties\n",
|
191 |
+
" )"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 11,
|
197 |
+
"metadata": {},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"import os\n",
|
201 |
+
"from langchain.chains.openai_functions import (\n",
|
202 |
+
" create_openai_fn_chain,\n",
|
203 |
+
" create_structured_output_runnable,\n",
|
204 |
+
")\n",
|
205 |
+
"from langchain_openai import ChatOpenAI\n",
|
206 |
+
"from langchain.prompts import ChatPromptTemplate\n",
|
207 |
+
"\n",
|
208 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
|
209 |
+
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\", temperature=0)\n",
|
210 |
+
"\n",
|
211 |
+
"def get_extraction_chain(\n",
|
212 |
+
" allowed_nodes: Optional[List[str]] = None,\n",
|
213 |
+
" allowed_rels: Optional[List[str]] = None\n",
|
214 |
+
" ):\n",
|
215 |
+
" prompt = ChatPromptTemplate.from_messages(\n",
|
216 |
+
" [(\n",
|
217 |
+
" \"system\",\n",
|
218 |
+
" f\"\"\"# Knowledge Graph Instructions for GPT-4\n",
|
219 |
+
"## 1. Overview\n",
|
220 |
+
"You are a sophisticated algorithm tailored for parsing Wikipedia pages to construct a knowledge graph about chemotherapy and related cancer treatments.\n",
|
221 |
+
"- **Nodes** symbolize entities such as medical conditions, drugs, symptoms, treatments, and associated medical concepts.\n",
|
222 |
+
"- The goal is to create a precise and comprehensible knowledge graph, serving as a reliable resource for medical practitioners and scholarly research.\n",
|
223 |
+
"\n",
|
224 |
+
"## 2. Labeling Nodes\n",
|
225 |
+
"- **Consistency**: Utilize uniform labels for node types to maintain clarity.\n",
|
226 |
+
" - For instance, consistently label drugs as **\"Drug\"**, symptoms as **\"Symptom\"**, and treatments as **\"Treatment\"**.\n",
|
227 |
+
"- **Node IDs**: Apply descriptive, legible identifiers for node IDs, sourced directly from the text.\n",
|
228 |
+
"\n",
|
229 |
+
"{'- **Allowed Node Labels:**' + \", \".join(['Drug', 'Symptom', 'Treatment', 'MedicalCondition', 'ResearchStudy']) if allowed_nodes else \"\"}\n",
|
230 |
+
"{'- **Allowed Relationship Types**:' + \", \".join(['Treats', 'Causes', 'Researches', 'Recommends']) if allowed_rels else \"\"}\n",
|
231 |
+
"\n",
|
232 |
+
"## 3. Handling Numerical Data and Dates\n",
|
233 |
+
"- Integrate numerical data and dates as attributes of the corresponding nodes.\n",
|
234 |
+
"- **No Isolated Nodes for Dates/Numbers**: Directly associate dates and numerical figures as attributes with pertinent nodes.\n",
|
235 |
+
"- **Property Format**: Follow a straightforward key-value pattern for properties, with keys in camelCase, for example, `approvedYear`, `dosageAmount`.\n",
|
236 |
+
"\n",
|
237 |
+
"## 4. Coreference Resolution\n",
|
238 |
+
"- **Entity Consistency**: Guarantee uniform identification of each entity across the graph.\n",
|
239 |
+
" - For example, if \"Methotrexate\" and \"MTX\" reference the same medication, uniformly apply \"Methotrexate\" as the node ID.\n",
|
240 |
+
"\n",
|
241 |
+
"## 5. Relationship Naming Conventions\n",
|
242 |
+
"- **Clarity and Standardization**: Utilize clear and standardized relationship names, preferring uppercase with underscores for readability.\n",
|
243 |
+
" - For instance, use \"HAS_SIDE_EFFECT\" instead of \"HASSIDEEFFECT\", use \"CAN_RESULT_FROM\" instead of \"CANRESULTFROM\" etc. You keep making the same mistakes of storing the relationships without the \"_\" in between the words. Any further similar errors will lead to termination.\n",
|
244 |
+
"- **Relevance and Specificity**: Choose relationship names that accurately reflect the connection between nodes, such as \"INHIBITS\" or \"ACTIVATES\" for interactions between substances.\n",
|
245 |
+
"\n",
|
246 |
+
"## 6. Strict Compliance\n",
|
247 |
+
"Rigorous adherence to these instructions is essential. Failure to comply with the specified formatting and labeling norms will necessitate output revision or discard.\n",
|
248 |
+
" \"\"\"),\n",
|
249 |
+
" (\"human\", \"Use the given format to extract information from the following input: {input}\"),\n",
|
250 |
+
" (\"human\", \"Tip: Precision in the node and relationship creation is vital for the integrity of the knowledge graph.\"),\n",
|
251 |
+
" ])\n",
|
252 |
+
" return create_structured_output_chain(KnowledgeGraph, llm, prompt)"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 12,
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"def extract_and_store_graph(\n",
|
262 |
+
" document: Document,\n",
|
263 |
+
" nodes:Optional[List[str]] = None,\n",
|
264 |
+
" rels:Optional[List[str]]=None) -> None:\n",
|
265 |
+
" # Extract graph data using OpenAI functions\n",
|
266 |
+
" extract_chain = get_extraction_chain(nodes, rels)\n",
|
267 |
+
" data = extract_chain.invoke(document.page_content)['function']\n",
|
268 |
+
" # Construct a graph document\n",
|
269 |
+
" graph_document = GraphDocument(\n",
|
270 |
+
" nodes = [map_to_base_node(node) for node in data.nodes],\n",
|
271 |
+
" relationships = [map_to_base_relationship(rel) for rel in data.rels],\n",
|
272 |
+
" source = document\n",
|
273 |
+
" )\n",
|
274 |
+
" # Store information into a graph\n",
|
275 |
+
" graph.add_graph_documents([graph_document])"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": 13,
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [],
|
283 |
+
"source": [
|
284 |
+
"from langchain.document_loaders import WikipediaLoader\n",
|
285 |
+
"from langchain.text_splitter import TokenTextSplitter\n",
|
286 |
+
"\n",
|
287 |
+
"# Read the wikipedia article\n",
|
288 |
+
"raw_documents = WikipediaLoader(query=\"Chemotherapy\").load()\n",
|
289 |
+
"# Define chunking strategy\n",
|
290 |
+
"text_splitter = TokenTextSplitter(chunk_size=4096, chunk_overlap=96)\n",
|
291 |
+
"\n",
|
292 |
+
"# Only take the first the raw_documents\n",
|
293 |
+
"documents = text_splitter.split_documents(raw_documents[:5])"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 14,
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [
|
301 |
+
{
|
302 |
+
"name": "stderr",
|
303 |
+
"output_type": "stream",
|
304 |
+
"text": [
|
305 |
+
" 0%| | 0/5 [00:00<?, ?it/s]"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"name": "stdout",
|
310 |
+
"output_type": "stream",
|
311 |
+
"text": [
|
312 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"name": "stderr",
|
317 |
+
"output_type": "stream",
|
318 |
+
"text": [
|
319 |
+
" 0%| | 0/5 [01:25<?, ?it/s]\n"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"ename": "TypeError",
|
324 |
+
"evalue": "'KnowledgeGraph' object is not subscriptable",
|
325 |
+
"output_type": "error",
|
326 |
+
"traceback": [
|
327 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
328 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
329 |
+
"Cell \u001b[0;32mIn[14], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtqdm\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m tqdm\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, d \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28menumerate\u001b[39m(documents), total\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(documents)):\n\u001b[0;32m----> 4\u001b[0m \u001b[43mextract_and_store_graph\u001b[49m\u001b[43m(\u001b[49m\u001b[43md\u001b[49m\u001b[43m)\u001b[49m\n",
|
330 |
+
"Cell \u001b[0;32mIn[12], line 7\u001b[0m, in \u001b[0;36mextract_and_store_graph\u001b[0;34m(document, nodes, rels)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mextract_and_store_graph\u001b[39m(\n\u001b[1;32m 2\u001b[0m document: Document,\n\u001b[1;32m 3\u001b[0m nodes:Optional[List[\u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 4\u001b[0m rels:Optional[List[\u001b[38;5;28mstr\u001b[39m]]\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Extract graph data using OpenAI functions\u001b[39;00m\n\u001b[1;32m 6\u001b[0m extract_chain \u001b[38;5;241m=\u001b[39m get_extraction_chain(nodes, rels)\n\u001b[0;32m----> 7\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mextract_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdocument\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpage_content\u001b[49m\u001b[43m)\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfunction\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Construct a graph document\u001b[39;00m\n\u001b[1;32m 9\u001b[0m graph_document \u001b[38;5;241m=\u001b[39m GraphDocument(\n\u001b[1;32m 10\u001b[0m nodes \u001b[38;5;241m=\u001b[39m [map_to_base_node(node) \u001b[38;5;28;01mfor\u001b[39;00m node \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mnodes],\n\u001b[1;32m 11\u001b[0m relationships \u001b[38;5;241m=\u001b[39m [map_to_base_relationship(rel) \u001b[38;5;28;01mfor\u001b[39;00m rel \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mrels],\n\u001b[1;32m 12\u001b[0m source \u001b[38;5;241m=\u001b[39m document\n\u001b[1;32m 13\u001b[0m )\n",
|
331 |
+
"\u001b[0;31mTypeError\u001b[0m: 'KnowledgeGraph' object is not subscriptable"
|
332 |
+
]
|
333 |
+
}
|
334 |
+
],
|
335 |
+
"source": [
|
336 |
+
"from tqdm import tqdm\n",
|
337 |
+
"\n",
|
338 |
+
"for i, d in tqdm(enumerate(documents), total=len(documents)):\n",
|
339 |
+
" extract_and_store_graph(d)"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": 10,
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [],
|
347 |
+
"source": [
|
348 |
+
"# Query the knowledge graph in a RAG application\n",
|
349 |
+
"from langchain.chains import GraphCypherQAChain\n",
|
350 |
+
"\n",
|
351 |
+
"graph.refresh_schema()\n",
|
352 |
+
"\n",
|
353 |
+
"cypher_chain = GraphCypherQAChain.from_llm(\n",
|
354 |
+
" graph=graph,\n",
|
355 |
+
" cypher_llm=ChatOpenAI(temperature=0, model=\"gpt-4\"),\n",
|
356 |
+
" qa_llm=ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-16k\"),\n",
|
357 |
+
" #validate_cypher=True, # Validate relationship directions\n",
|
358 |
+
" verbose=True\n",
|
359 |
+
")"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 11,
|
365 |
+
"metadata": {},
|
366 |
+
"outputs": [
|
367 |
+
{
|
368 |
+
"name": "stdout",
|
369 |
+
"output_type": "stream",
|
370 |
+
"text": [
|
371 |
+
"\n",
|
372 |
+
"\n",
|
373 |
+
"\u001b[1m> Entering new GraphCypherQAChain chain...\u001b[0m\n",
|
374 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
375 |
+
"Generated Cypher:\n",
|
376 |
+
"\u001b[32;1m\u001b[1;3mMATCH (t:Treatment {name: \"Induction Chemotherapy\"})-[:CONTROLS]->(mc) RETURN mc.name\u001b[0m\n",
|
377 |
+
"Full Context:\n",
|
378 |
+
"\u001b[32;1m\u001b[1;3m[{'mc.name': 'Malignant Lymphomas'}, {'mc.name': 'Head And Neck Squamous Cell Carcinomas'}, {'mc.name': 'Malignant Lymphomas'}, {'mc.name': 'Head And Neck Squamous Cell Carcinomas'}]\u001b[0m\n",
|
379 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n",
|
380 |
+
"\n",
|
381 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"data": {
|
386 |
+
"text/plain": [
|
387 |
+
"{'query': 'What does Induction Chemotherapy control?',\n",
|
388 |
+
" 'result': 'Induction Chemotherapy controls Malignant Lymphomas and Head And Neck Squamous Cell Carcinomas.'}"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
"execution_count": 11,
|
392 |
+
"metadata": {},
|
393 |
+
"output_type": "execute_result"
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"source": [
|
397 |
+
"cypher_chain.invoke({\"query\": \"What does Induction Chemotherapy control?\"})"
|
398 |
+
]
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"cell_type": "code",
|
402 |
+
"execution_count": null,
|
403 |
+
"metadata": {},
|
404 |
+
"outputs": [],
|
405 |
+
"source": []
|
406 |
+
}
|
407 |
+
],
|
408 |
+
"metadata": {
|
409 |
+
"kernelspec": {
|
410 |
+
"display_name": "my_project_env",
|
411 |
+
"language": "python",
|
412 |
+
"name": "python3"
|
413 |
+
},
|
414 |
+
"language_info": {
|
415 |
+
"codemirror_mode": {
|
416 |
+
"name": "ipython",
|
417 |
+
"version": 3
|
418 |
+
},
|
419 |
+
"file_extension": ".py",
|
420 |
+
"mimetype": "text/x-python",
|
421 |
+
"name": "python",
|
422 |
+
"nbconvert_exporter": "python",
|
423 |
+
"pygments_lexer": "ipython3",
|
424 |
+
"version": "3.9.19"
|
425 |
+
}
|
426 |
+
},
|
427 |
+
"nbformat": 4,
|
428 |
+
"nbformat_minor": 2
|
429 |
+
}
|