Prakhar Bhandari
commited on
Commit
·
4f70c47
1
Parent(s):
06aff0c
Added initial project files including environment setup and notebooks
Browse files- environment.yml +180 -0
- kg_creation.ipynb +392 -0
- requirements.txt +27 -0
environment.yml
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: graph_rag
|
2 |
+
channels:
|
3 |
+
- defaults
|
4 |
+
dependencies:
|
5 |
+
- _libgcc_mutex=0.1=main
|
6 |
+
- _openmp_mutex=5.1=1_gnu
|
7 |
+
- ca-certificates=2024.3.11=h06a4308_0
|
8 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
9 |
+
- libffi=3.4.4=h6a678d5_0
|
10 |
+
- libgcc-ng=11.2.0=h1234567_1
|
11 |
+
- libgomp=11.2.0=h1234567_1
|
12 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
13 |
+
- ncurses=6.4=h6a678d5_0
|
14 |
+
- openssl=3.0.13=h7f8727e_0
|
15 |
+
- pip=23.3.1=py39h06a4308_0
|
16 |
+
- python=3.9.19=h955ad1f_0
|
17 |
+
- readline=8.2=h5eee18b_0
|
18 |
+
- setuptools=68.2.2=py39h06a4308_0
|
19 |
+
- sqlite=3.41.2=h5eee18b_0
|
20 |
+
- tk=8.6.12=h1ccaba5_0
|
21 |
+
- wheel=0.41.2=py39h06a4308_0
|
22 |
+
- xz=5.4.6=h5eee18b_0
|
23 |
+
- zlib=1.2.13=h5eee18b_0
|
24 |
+
- pip:
|
25 |
+
- aiohttp==3.9.5
|
26 |
+
- aiosignal==1.3.1
|
27 |
+
- annotated-types==0.6.0
|
28 |
+
- anyio==4.3.0
|
29 |
+
- argon2-cffi==23.1.0
|
30 |
+
- argon2-cffi-bindings==21.2.0
|
31 |
+
- arrow==1.3.0
|
32 |
+
- asttokens==2.4.1
|
33 |
+
- async-lru==2.0.4
|
34 |
+
- async-timeout==4.0.3
|
35 |
+
- attrs==23.2.0
|
36 |
+
- babel==2.14.0
|
37 |
+
- beautifulsoup4==4.12.3
|
38 |
+
- bleach==6.1.0
|
39 |
+
- certifi==2024.2.2
|
40 |
+
- cffi==1.16.0
|
41 |
+
- charset-normalizer==3.3.2
|
42 |
+
- click==8.1.7
|
43 |
+
- comm==0.2.2
|
44 |
+
- dataclasses-json==0.6.4
|
45 |
+
- debugpy==1.8.1
|
46 |
+
- decorator==5.1.1
|
47 |
+
- defusedxml==0.7.1
|
48 |
+
- deprecated==1.2.14
|
49 |
+
- dirtyjson==1.0.8
|
50 |
+
- distro==1.9.0
|
51 |
+
- exceptiongroup==1.2.1
|
52 |
+
- executing==2.0.1
|
53 |
+
- fastjsonschema==2.19.1
|
54 |
+
- fqdn==1.5.1
|
55 |
+
- frozenlist==1.4.1
|
56 |
+
- fsspec==2024.3.1
|
57 |
+
- greenlet==3.0.3
|
58 |
+
- h11==0.14.0
|
59 |
+
- httpcore==1.0.5
|
60 |
+
- httpx==0.27.0
|
61 |
+
- idna==3.7
|
62 |
+
- importlib-metadata==7.1.0
|
63 |
+
- ipykernel==6.29.4
|
64 |
+
- ipython==8.18.1
|
65 |
+
- isoduration==20.11.0
|
66 |
+
- jedi==0.19.1
|
67 |
+
- jinja2==3.1.3
|
68 |
+
- joblib==1.4.0
|
69 |
+
- json5==0.9.25
|
70 |
+
- jsonpatch==1.33
|
71 |
+
- jsonpointer==2.4
|
72 |
+
- jsonschema==4.21.1
|
73 |
+
- jsonschema-specifications==2023.12.1
|
74 |
+
- jupyter-client==8.6.1
|
75 |
+
- jupyter-core==5.7.2
|
76 |
+
- jupyter-events==0.10.0
|
77 |
+
- jupyter-lsp==2.2.5
|
78 |
+
- jupyter-server==2.14.0
|
79 |
+
- jupyter-server-terminals==0.5.3
|
80 |
+
- jupyterlab==4.1.6
|
81 |
+
- jupyterlab-pygments==0.3.0
|
82 |
+
- jupyterlab-server==2.26.0
|
83 |
+
- langchain==0.1.16
|
84 |
+
- langchain-community==0.0.34
|
85 |
+
- langchain-core==0.1.45
|
86 |
+
- langchain-openai==0.1.3
|
87 |
+
- langchain-text-splitters==0.0.1
|
88 |
+
- langsmith==0.1.49
|
89 |
+
- llama-index==0.10.30
|
90 |
+
- llama-index-agent-openai==0.2.2
|
91 |
+
- llama-index-cli==0.1.12
|
92 |
+
- llama-index-core==0.10.30
|
93 |
+
- llama-index-embeddings-openai==0.1.8
|
94 |
+
- llama-index-indices-managed-llama-cloud==0.1.5
|
95 |
+
- llama-index-legacy==0.9.48
|
96 |
+
- llama-index-llms-openai==0.1.16
|
97 |
+
- llama-index-multi-modal-llms-openai==0.1.5
|
98 |
+
- llama-index-program-openai==0.1.5
|
99 |
+
- llama-index-question-gen-openai==0.1.3
|
100 |
+
- llama-index-readers-file==0.1.19
|
101 |
+
- llama-index-readers-llama-parse==0.1.4
|
102 |
+
- llama-parse==0.4.1
|
103 |
+
- llamaindex-py-client==0.1.18
|
104 |
+
- markupsafe==2.1.5
|
105 |
+
- marshmallow==3.21.1
|
106 |
+
- matplotlib-inline==0.1.7
|
107 |
+
- mistune==3.0.2
|
108 |
+
- multidict==6.0.5
|
109 |
+
- mypy-extensions==1.0.0
|
110 |
+
- nbclient==0.10.0
|
111 |
+
- nbconvert==7.16.3
|
112 |
+
- nbformat==5.10.4
|
113 |
+
- neo4j==5.19.0
|
114 |
+
- nest-asyncio==1.6.0
|
115 |
+
- networkx==3.2.1
|
116 |
+
- nltk==3.8.1
|
117 |
+
- notebook==7.1.3
|
118 |
+
- notebook-shim==0.2.4
|
119 |
+
- numpy==1.26.4
|
120 |
+
- openai==1.23.2
|
121 |
+
- orjson==3.10.1
|
122 |
+
- overrides==7.7.0
|
123 |
+
- packaging==23.2
|
124 |
+
- pandas==2.2.2
|
125 |
+
- pandocfilters==1.5.1
|
126 |
+
- parso==0.8.4
|
127 |
+
- pexpect==4.9.0
|
128 |
+
- pillow==10.3.0
|
129 |
+
- platformdirs==4.2.0
|
130 |
+
- prometheus-client==0.20.0
|
131 |
+
- prompt-toolkit==3.0.43
|
132 |
+
- psutil==5.9.8
|
133 |
+
- ptyprocess==0.7.0
|
134 |
+
- pure-eval==0.2.2
|
135 |
+
- pycparser==2.22
|
136 |
+
- pydantic==2.7.0
|
137 |
+
- pydantic-core==2.18.1
|
138 |
+
- pygments==2.17.2
|
139 |
+
- pypdf==4.2.0
|
140 |
+
- python-dateutil==2.9.0.post0
|
141 |
+
- python-json-logger==2.0.7
|
142 |
+
- pytz==2024.1
|
143 |
+
- pyyaml==6.0.1
|
144 |
+
- pyzmq==26.0.2
|
145 |
+
- referencing==0.34.0
|
146 |
+
- regex==2024.4.16
|
147 |
+
- requests==2.31.0
|
148 |
+
- rfc3339-validator==0.1.4
|
149 |
+
- rfc3986-validator==0.1.1
|
150 |
+
- rpds-py==0.18.0
|
151 |
+
- send2trash==1.8.3
|
152 |
+
- six==1.16.0
|
153 |
+
- sniffio==1.3.1
|
154 |
+
- soupsieve==2.5
|
155 |
+
- sqlalchemy==2.0.29
|
156 |
+
- stack-data==0.6.3
|
157 |
+
- striprtf==0.0.26
|
158 |
+
- tenacity==8.2.3
|
159 |
+
- terminado==0.18.1
|
160 |
+
- tiktoken==0.6.0
|
161 |
+
- tinycss2==1.2.1
|
162 |
+
- tomli==2.0.1
|
163 |
+
- tornado==6.4
|
164 |
+
- tqdm==4.66.2
|
165 |
+
- traitlets==5.14.3
|
166 |
+
- types-python-dateutil==2.9.0.20240316
|
167 |
+
- typing-extensions==4.11.0
|
168 |
+
- typing-inspect==0.9.0
|
169 |
+
- tzdata==2024.1
|
170 |
+
- uri-template==1.3.0
|
171 |
+
- urllib3==2.2.1
|
172 |
+
- wcwidth==0.2.13
|
173 |
+
- webcolors==1.13
|
174 |
+
- webencodings==0.5.1
|
175 |
+
- websocket-client==1.7.0
|
176 |
+
- wikipedia==1.4.0
|
177 |
+
- wrapt==1.16.0
|
178 |
+
- yarl==1.9.4
|
179 |
+
- zipp==3.18.1
|
180 |
+
prefix: /local/home/pbhandari/miniconda3/envs/graph_rag
|
kg_creation.ipynb
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.environ['OPENAI_API_KEY'] = \"sk-proj-k8uMlsAJbdAuSWWnvaHyT3BlbkFJyQB8yMQavFuQDVmc4sNs\"\n",
|
11 |
+
"\n",
|
12 |
+
"import logging\n",
|
13 |
+
"import sys\n",
|
14 |
+
"\n",
|
15 |
+
"logging.basicConfig(\n",
|
16 |
+
" stream=sys.stdout, level=logging.INFO\n",
|
17 |
+
") # logging.DEBUG for more verbose output\n",
|
18 |
+
"\n",
|
19 |
+
"\n",
|
20 |
+
"# define LLM\n",
|
21 |
+
"from llama_index.llms.openai import OpenAI\n",
|
22 |
+
"from llama_index.core import Settings\n",
|
23 |
+
"\n",
|
24 |
+
"Settings.llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo-0125\")\n",
|
25 |
+
"Settings.chunk_size = 512"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 13,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [
|
33 |
+
{
|
34 |
+
"name": "stdout",
|
35 |
+
"output_type": "stream",
|
36 |
+
"text": [
|
37 |
+
"Requirement already satisfied: langchain in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.1.16)\n",
|
38 |
+
"Requirement already satisfied: neo4j in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (5.19.0)\n",
|
39 |
+
"Requirement already satisfied: openai in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (1.23.2)\n",
|
40 |
+
"Collecting wikipedia\n",
|
41 |
+
" Downloading wikipedia-1.4.0.tar.gz (27 kB)\n",
|
42 |
+
" Preparing metadata (setup.py) ... \u001b[?25ldone\n",
|
43 |
+
"\u001b[?25hRequirement already satisfied: tiktoken in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (0.6.0)\n",
|
44 |
+
"Collecting langchain_openai\n",
|
45 |
+
" Downloading langchain_openai-0.1.3-py3-none-any.whl.metadata (2.5 kB)\n",
|
46 |
+
"Requirement already satisfied: PyYAML>=5.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (6.0.1)\n",
|
47 |
+
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.0.29)\n",
|
48 |
+
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (3.9.5)\n",
|
49 |
+
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (4.0.3)\n",
|
50 |
+
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.6.4)\n",
|
51 |
+
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.33)\n",
|
52 |
+
"Requirement already satisfied: langchain-community<0.1,>=0.0.32 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.34)\n",
|
53 |
+
"Requirement already satisfied: langchain-core<0.2.0,>=0.1.42 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.45)\n",
|
54 |
+
"Requirement already satisfied: langchain-text-splitters<0.1,>=0.0.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.0.1)\n",
|
55 |
+
"Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (0.1.49)\n",
|
56 |
+
"Requirement already satisfied: numpy<2,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (1.26.4)\n",
|
57 |
+
"Requirement already satisfied: pydantic<3,>=1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.7.0)\n",
|
58 |
+
"Requirement already satisfied: requests<3,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (2.31.0)\n",
|
59 |
+
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain) (8.2.3)\n",
|
60 |
+
"Requirement already satisfied: pytz in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from neo4j) (2024.1)\n",
|
61 |
+
"Requirement already satisfied: anyio<5,>=3.5.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.3.0)\n",
|
62 |
+
"Requirement already satisfied: distro<2,>=1.7.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.9.0)\n",
|
63 |
+
"Requirement already satisfied: httpx<1,>=0.23.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (0.27.0)\n",
|
64 |
+
"Requirement already satisfied: sniffio in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (1.3.1)\n",
|
65 |
+
"Requirement already satisfied: tqdm>4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.66.2)\n",
|
66 |
+
"Requirement already satisfied: typing-extensions<5,>=4.7 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from openai) (4.11.0)\n",
|
67 |
+
"Requirement already satisfied: beautifulsoup4 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from wikipedia) (4.12.3)\n",
|
68 |
+
"Requirement already satisfied: regex>=2022.1.18 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from tiktoken) (2024.4.16)\n",
|
69 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)\n",
|
70 |
+
"Requirement already satisfied: attrs>=17.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (23.2.0)\n",
|
71 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.4.1)\n",
|
72 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.0.5)\n",
|
73 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.9.4)\n",
|
74 |
+
"Requirement already satisfied: idna>=2.8 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (3.7)\n",
|
75 |
+
"Requirement already satisfied: exceptiongroup>=1.0.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from anyio<5,>=3.5.0->openai) (1.2.1)\n",
|
76 |
+
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (3.21.1)\n",
|
77 |
+
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from dataclasses-json<0.7,>=0.5.7->langchain) (0.9.0)\n",
|
78 |
+
"Requirement already satisfied: certifi in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (2024.2.2)\n",
|
79 |
+
"Requirement already satisfied: httpcore==1.* in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpx<1,>=0.23.0->openai) (1.0.5)\n",
|
80 |
+
"Requirement already satisfied: h11<0.15,>=0.13 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0)\n",
|
81 |
+
"Requirement already satisfied: jsonpointer>=1.9 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from jsonpatch<2.0,>=1.33->langchain) (2.4)\n",
|
82 |
+
"Requirement already satisfied: packaging<24.0,>=23.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langchain-core<0.2.0,>=0.1.42->langchain) (23.2)\n",
|
83 |
+
"Requirement already satisfied: orjson<4.0.0,>=3.9.14 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.1)\n",
|
84 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (0.6.0)\n",
|
85 |
+
"Requirement already satisfied: pydantic-core==2.18.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from pydantic<3,>=1->langchain) (2.18.1)\n",
|
86 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (3.3.2)\n",
|
87 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from requests<3,>=2->langchain) (2.2.1)\n",
|
88 |
+
"Requirement already satisfied: greenlet!=0.4.17 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.0.3)\n",
|
89 |
+
"Requirement already satisfied: soupsieve>1.2 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from beautifulsoup4->wikipedia) (2.5)\n",
|
90 |
+
"Requirement already satisfied: mypy-extensions>=0.3.0 in /local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->langchain) (1.0.0)\n",
|
91 |
+
"Downloading langchain_openai-0.1.3-py3-none-any.whl (33 kB)\n",
|
92 |
+
"Building wheels for collected packages: wikipedia\n",
|
93 |
+
" Building wheel for wikipedia (setup.py) ... \u001b[?25ldone\n",
|
94 |
+
"\u001b[?25h Created wheel for wikipedia: filename=wikipedia-1.4.0-py3-none-any.whl size=11678 sha256=8579328fd821efddb0b23c1aed4bccd2d0f77a18118ee2e2a9e69badd2d5aa0d\n",
|
95 |
+
" Stored in directory: /local/home/pbhandari/.cache/pip/wheels/c2/46/f4/caa1bee71096d7b0cdca2f2a2af45cacf35c5760bee8f00948\n",
|
96 |
+
"Successfully built wikipedia\n",
|
97 |
+
"Installing collected packages: wikipedia, langchain_openai\n",
|
98 |
+
"Successfully installed langchain_openai-0.1.3 wikipedia-1.4.0\n"
|
99 |
+
]
|
100 |
+
}
|
101 |
+
],
|
102 |
+
"source": [
|
103 |
+
"!pip install langchain neo4j openai wikipedia tiktoken langchain_openai"
|
104 |
+
]
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": 6,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"from langchain.graphs import Neo4jGraph\n",
|
113 |
+
"\n",
|
114 |
+
"url = \"neo4j+s://2f409740.databases.neo4j.io\"\n",
|
115 |
+
"username =\"neo4j\"\n",
|
116 |
+
"password = \"oe7A9ugxhxcuEtwci8khPIt2TTdz_am9AYDx1r9e9Tw\"\n",
|
117 |
+
"graph = Neo4jGraph(\n",
|
118 |
+
" url=url,\n",
|
119 |
+
" username=username,\n",
|
120 |
+
" password=password\n",
|
121 |
+
")"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 14,
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [],
|
129 |
+
"source": [
|
130 |
+
"from langchain_community.graphs.graph_document import (\n",
|
131 |
+
" Node as BaseNode,\n",
|
132 |
+
" Relationship as BaseRelationship,\n",
|
133 |
+
" GraphDocument,\n",
|
134 |
+
")\n",
|
135 |
+
"from langchain.schema import Document\n",
|
136 |
+
"from typing import List, Dict, Any, Optional\n",
|
137 |
+
"from langchain.pydantic_v1 import Field, BaseModel\n",
|
138 |
+
"\n",
|
139 |
+
"class Property(BaseModel):\n",
|
140 |
+
" \"\"\"A single property consisting of key and value\"\"\"\n",
|
141 |
+
" key: str = Field(..., description=\"key\")\n",
|
142 |
+
" value: str = Field(..., description=\"value\")\n",
|
143 |
+
"\n",
|
144 |
+
"class Node(BaseNode):\n",
|
145 |
+
" properties: Optional[List[Property]] = Field(\n",
|
146 |
+
" None, description=\"List of node properties\")\n",
|
147 |
+
"\n",
|
148 |
+
"class Relationship(BaseRelationship):\n",
|
149 |
+
" properties: Optional[List[Property]] = Field(\n",
|
150 |
+
" None, description=\"List of relationship properties\"\n",
|
151 |
+
" )\n",
|
152 |
+
"\n",
|
153 |
+
"class KnowledgeGraph(BaseModel):\n",
|
154 |
+
" \"\"\"Generate a knowledge graph with entities and relationships.\"\"\"\n",
|
155 |
+
" nodes: List[Node] = Field(\n",
|
156 |
+
" ..., description=\"List of nodes in the knowledge graph\")\n",
|
157 |
+
" rels: List[Relationship] = Field(\n",
|
158 |
+
" ..., description=\"List of relationships in the knowledge graph\"\n",
|
159 |
+
" )"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"execution_count": 15,
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"def format_property_key(s: str) -> str:\n",
|
169 |
+
" words = s.split()\n",
|
170 |
+
" if not words:\n",
|
171 |
+
" return s\n",
|
172 |
+
" first_word = words[0].lower()\n",
|
173 |
+
" capitalized_words = [word.capitalize() for word in words[1:]]\n",
|
174 |
+
" return \"\".join([first_word] + capitalized_words)\n",
|
175 |
+
"\n",
|
176 |
+
"def props_to_dict(props) -> dict:\n",
|
177 |
+
" \"\"\"Convert properties to a dictionary.\"\"\"\n",
|
178 |
+
" properties = {}\n",
|
179 |
+
" if not props:\n",
|
180 |
+
" return properties\n",
|
181 |
+
" for p in props:\n",
|
182 |
+
" properties[format_property_key(p.key)] = p.value\n",
|
183 |
+
" return properties\n",
|
184 |
+
"\n",
|
185 |
+
"def map_to_base_node(node: Node) -> BaseNode:\n",
|
186 |
+
" \"\"\"Map the KnowledgeGraph Node to the base Node.\"\"\"\n",
|
187 |
+
" properties = props_to_dict(node.properties) if node.properties else {}\n",
|
188 |
+
" # Add name property for better Cypher statement generation\n",
|
189 |
+
" properties[\"name\"] = node.id.title()\n",
|
190 |
+
" return BaseNode(\n",
|
191 |
+
" id=node.id.title(), type=node.type.capitalize(), properties=properties\n",
|
192 |
+
" )\n",
|
193 |
+
"\n",
|
194 |
+
"\n",
|
195 |
+
"def map_to_base_relationship(rel: Relationship) -> BaseRelationship:\n",
|
196 |
+
" \"\"\"Map the KnowledgeGraph Relationship to the base Relationship.\"\"\"\n",
|
197 |
+
" source = map_to_base_node(rel.source)\n",
|
198 |
+
" target = map_to_base_node(rel.target)\n",
|
199 |
+
" properties = props_to_dict(rel.properties) if rel.properties else {}\n",
|
200 |
+
" return BaseRelationship(\n",
|
201 |
+
" source=source, target=target, type=rel.type, properties=properties\n",
|
202 |
+
" )"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": 16,
|
208 |
+
"metadata": {},
|
209 |
+
"outputs": [],
|
210 |
+
"source": [
|
211 |
+
"import os\n",
|
212 |
+
"from langchain.chains.openai_functions import (\n",
|
213 |
+
" create_openai_fn_chain,\n",
|
214 |
+
" create_structured_output_chain,\n",
|
215 |
+
")\n",
|
216 |
+
"from langchain_openai import ChatOpenAI\n",
|
217 |
+
"from langchain.prompts import ChatPromptTemplate\n",
|
218 |
+
"\n",
|
219 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"sk-proj-k8uMlsAJbdAuSWWnvaHyT3BlbkFJyQB8yMQavFuQDVmc4sNs\"\n",
|
220 |
+
"llm = ChatOpenAI(model=\"gpt-3.5-turbo-16k\", temperature=0)\n",
|
221 |
+
"\n",
|
222 |
+
"def get_extraction_chain(\n",
|
223 |
+
" allowed_nodes: Optional[List[str]] = None,\n",
|
224 |
+
" allowed_rels: Optional[List[str]] = None\n",
|
225 |
+
" ):\n",
|
226 |
+
" prompt = ChatPromptTemplate.from_messages(\n",
|
227 |
+
" [(\n",
|
228 |
+
" \"system\",\n",
|
229 |
+
" f\"\"\"# Knowledge Graph Instructions for GPT-4\n",
|
230 |
+
"## 1. Overview\n",
|
231 |
+
"You are a top-tier algorithm designed for extracting information in structured formats to build a knowledge graph.\n",
|
232 |
+
"- **Nodes** represent entities and concepts. They're akin to Wikipedia nodes.\n",
|
233 |
+
"- The aim is to achieve simplicity and clarity in the knowledge graph, making it accessible for a vast audience.\n",
|
234 |
+
"## 2. Labeling Nodes\n",
|
235 |
+
"- **Consistency**: Ensure you use basic or elementary types for node labels.\n",
|
236 |
+
" - For example, when you identify an entity representing a person, always label it as **\"person\"**. Avoid using more specific terms like \"mathematician\" or \"scientist\".\n",
|
237 |
+
"- **Node IDs**: Never utilize integers as node IDs. Node IDs should be names or human-readable identifiers found in the text.\n",
|
238 |
+
"{'- **Allowed Node Labels:**' + \", \".join(allowed_nodes) if allowed_nodes else \"\"}\n",
|
239 |
+
"{'- **Allowed Relationship Types**:' + \", \".join(allowed_rels) if allowed_rels else \"\"}\n",
|
240 |
+
"## 3. Handling Numerical Data and Dates\n",
|
241 |
+
"- Numerical data, like age or other related information, should be incorporated as attributes or properties of the respective nodes.\n",
|
242 |
+
"- **No Separate Nodes for Dates/Numbers**: Do not create separate nodes for dates or numerical values. Always attach them as attributes or properties of nodes.\n",
|
243 |
+
"- **Property Format**: Properties must be in a key-value format.\n",
|
244 |
+
"- **Quotation Marks**: Never use escaped single or double quotes within property values.\n",
|
245 |
+
"- **Naming Convention**: Use camelCase for property keys, e.g., `birthDate`.\n",
|
246 |
+
"## 4. Coreference Resolution\n",
|
247 |
+
"- **Maintain Entity Consistency**: When extracting entities, it's vital to ensure consistency.\n",
|
248 |
+
"If an entity, such as \"John Doe\", is mentioned multiple times in the text but is referred to by different names or pronouns (e.g., \"Joe\", \"he\"),\n",
|
249 |
+
"always use the most complete identifier for that entity throughout the knowledge graph. In this example, use \"John Doe\" as the entity ID.\n",
|
250 |
+
"Remember, the knowledge graph should be coherent and easily understandable, so maintaining consistency in entity references is crucial.\n",
|
251 |
+
"## 5. Strict Compliance\n",
|
252 |
+
"Adhere to the rules strictly. Non-compliance will result in termination.\n",
|
253 |
+
" \"\"\"),\n",
|
254 |
+
" (\"human\", \"Use the given format to extract information from the following input: {input}\"),\n",
|
255 |
+
" (\"human\", \"Tip: Make sure to answer in the correct format\"),\n",
|
256 |
+
" ])\n",
|
257 |
+
" return create_structured_output_chain(KnowledgeGraph, llm, prompt, verbose=False)"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "code",
|
262 |
+
"execution_count": 17,
|
263 |
+
"metadata": {},
|
264 |
+
"outputs": [],
|
265 |
+
"source": [
|
266 |
+
"def extract_and_store_graph(\n",
|
267 |
+
" document: Document,\n",
|
268 |
+
" nodes:Optional[List[str]] = None,\n",
|
269 |
+
" rels:Optional[List[str]]=None) -> None:\n",
|
270 |
+
" # Extract graph data using OpenAI functions\n",
|
271 |
+
" extract_chain = get_extraction_chain(nodes, rels)\n",
|
272 |
+
" data = extract_chain.invoke(document.page_content)['function']\n",
|
273 |
+
" # Construct a graph document\n",
|
274 |
+
" graph_document = GraphDocument(\n",
|
275 |
+
" nodes = [map_to_base_node(node) for node in data.nodes],\n",
|
276 |
+
" relationships = [map_to_base_relationship(rel) for rel in data.rels],\n",
|
277 |
+
" source = document\n",
|
278 |
+
" )\n",
|
279 |
+
" # Store information into a graph\n",
|
280 |
+
" graph.add_graph_documents([graph_document])"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 18,
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"from langchain.document_loaders import WikipediaLoader\n",
|
290 |
+
"from langchain.text_splitter import TokenTextSplitter\n",
|
291 |
+
"\n",
|
292 |
+
"# Read the wikipedia article\n",
|
293 |
+
"raw_documents = WikipediaLoader(query=\"Chemotherapy\").load()\n",
|
294 |
+
"# Define chunking strategy\n",
|
295 |
+
"text_splitter = TokenTextSplitter(chunk_size=2048, chunk_overlap=24)\n",
|
296 |
+
"\n",
|
297 |
+
"# Only take the first the raw_documents\n",
|
298 |
+
"documents = text_splitter.split_documents(raw_documents[:3])"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 19,
|
304 |
+
"metadata": {},
|
305 |
+
"outputs": [
|
306 |
+
{
|
307 |
+
"name": "stderr",
|
308 |
+
"output_type": "stream",
|
309 |
+
"text": [
|
310 |
+
" 0%| | 0/3 [00:00<?, ?it/s]/local/home/pbhandari/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_core/_api/deprecation.py:119: LangChainDeprecationWarning: The function `create_structured_output_chain` was deprecated in LangChain 0.1.1 and will be removed in 0.2.0. Use create_structured_output_runnable instead.\n",
|
311 |
+
" warn_deprecated(\n"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"name": "stdout",
|
316 |
+
"output_type": "stream",
|
317 |
+
"text": [
|
318 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 429 Too Many Requests\"\n",
|
319 |
+
"INFO:openai._base_client:Retrying request to /chat/completions in 0.931655 seconds\n",
|
320 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 429 Too Many Requests\"\n",
|
321 |
+
"INFO:openai._base_client:Retrying request to /chat/completions in 1.853094 seconds\n",
|
322 |
+
"INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 429 Too Many Requests\"\n"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"name": "stderr",
|
327 |
+
"output_type": "stream",
|
328 |
+
"text": [
|
329 |
+
" 0%| | 0/3 [00:03<?, ?it/s]\n"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"ename": "RateLimitError",
|
334 |
+
"evalue": "Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}",
|
335 |
+
"output_type": "error",
|
336 |
+
"traceback": [
|
337 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
338 |
+
"\u001b[0;31mRateLimitError\u001b[0m Traceback (most recent call last)",
|
339 |
+
"Cell \u001b[0;32mIn[19], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtqdm\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m tqdm\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, d \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28menumerate\u001b[39m(documents), total\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mlen\u001b[39m(documents)):\n\u001b[0;32m----> 4\u001b[0m \u001b[43mextract_and_store_graph\u001b[49m\u001b[43m(\u001b[49m\u001b[43md\u001b[49m\u001b[43m)\u001b[49m\n",
|
340 |
+
"Cell \u001b[0;32mIn[17], line 7\u001b[0m, in \u001b[0;36mextract_and_store_graph\u001b[0;34m(document, nodes, rels)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mextract_and_store_graph\u001b[39m(\n\u001b[1;32m 2\u001b[0m document: Document,\n\u001b[1;32m 3\u001b[0m nodes:Optional[List[\u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 4\u001b[0m rels:Optional[List[\u001b[38;5;28mstr\u001b[39m]]\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Extract graph data using OpenAI functions\u001b[39;00m\n\u001b[1;32m 6\u001b[0m extract_chain \u001b[38;5;241m=\u001b[39m get_extraction_chain(nodes, rels)\n\u001b[0;32m----> 7\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mextract_chain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdocument\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpage_content\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfunction\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Construct a graph document\u001b[39;00m\n\u001b[1;32m 9\u001b[0m graph_document \u001b[38;5;241m=\u001b[39m GraphDocument(\n\u001b[1;32m 10\u001b[0m nodes \u001b[38;5;241m=\u001b[39m [map_to_base_node(node) \u001b[38;5;28;01mfor\u001b[39;00m node \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mnodes],\n\u001b[1;32m 11\u001b[0m relationships \u001b[38;5;241m=\u001b[39m [map_to_base_relationship(rel) \u001b[38;5;28;01mfor\u001b[39;00m rel \u001b[38;5;129;01min\u001b[39;00m data\u001b[38;5;241m.\u001b[39mrels],\n\u001b[1;32m 12\u001b[0m source \u001b[38;5;241m=\u001b[39m document\n\u001b[1;32m 13\u001b[0m )\n",
|
341 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain/chains/base.py:163\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 162\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 164\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_end(outputs)\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m include_run_info:\n",
|
342 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain/chains/base.py:153\u001b[0m, in \u001b[0;36mChain.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_validate_inputs(inputs)\n\u001b[1;32m 152\u001b[0m outputs \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m--> 153\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m new_arg_supported\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_call(inputs)\n\u001b[1;32m 156\u001b[0m )\n\u001b[1;32m 158\u001b[0m final_outputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprep_outputs(\n\u001b[1;32m 159\u001b[0m inputs, outputs, return_only_outputs\n\u001b[1;32m 160\u001b[0m )\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
|
343 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain/chains/llm.py:103\u001b[0m, in \u001b[0;36mLLMChain._call\u001b[0;34m(self, inputs, run_manager)\u001b[0m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_call\u001b[39m(\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 100\u001b[0m inputs: Dict[\u001b[38;5;28mstr\u001b[39m, Any],\n\u001b[1;32m 101\u001b[0m run_manager: Optional[CallbackManagerForChainRun] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 102\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dict[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]:\n\u001b[0;32m--> 103\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_outputs(response)[\u001b[38;5;241m0\u001b[39m]\n",
|
344 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain/chains/llm.py:115\u001b[0m, in \u001b[0;36mLLMChain.generate\u001b[0;34m(self, input_list, run_manager)\u001b[0m\n\u001b[1;32m 113\u001b[0m callbacks \u001b[38;5;241m=\u001b[39m run_manager\u001b[38;5;241m.\u001b[39mget_child() \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm, BaseLanguageModel):\n\u001b[0;32m--> 115\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_prompt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 116\u001b[0m \u001b[43m \u001b[49m\u001b[43mprompts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 117\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 119\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mllm_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 120\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 122\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm\u001b[38;5;241m.\u001b[39mbind(stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mllm_kwargs)\u001b[38;5;241m.\u001b[39mbatch(\n\u001b[1;32m 123\u001b[0m cast(List, prompts), {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcallbacks\u001b[39m\u001b[38;5;124m\"\u001b[39m: callbacks}\n\u001b[1;32m 124\u001b[0m )\n",
|
345 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_core/language_models/chat_models.py:560\u001b[0m, in \u001b[0;36mBaseChatModel.generate_prompt\u001b[0;34m(self, prompts, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m 552\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate_prompt\u001b[39m(\n\u001b[1;32m 553\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 554\u001b[0m prompts: List[PromptValue],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 557\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 558\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m 559\u001b[0m prompt_messages \u001b[38;5;241m=\u001b[39m [p\u001b[38;5;241m.\u001b[39mto_messages() \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m prompts]\n\u001b[0;32m--> 560\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt_messages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
346 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_core/language_models/chat_models.py:421\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n\u001b[1;32m 420\u001b[0m run_managers[i]\u001b[38;5;241m.\u001b[39mon_llm_error(e, response\u001b[38;5;241m=\u001b[39mLLMResult(generations\u001b[38;5;241m=\u001b[39m[]))\n\u001b[0;32m--> 421\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 422\u001b[0m flattened_outputs \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 423\u001b[0m LLMResult(generations\u001b[38;5;241m=\u001b[39m[res\u001b[38;5;241m.\u001b[39mgenerations], llm_output\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mllm_output) \u001b[38;5;66;03m# type: ignore[list-item]\u001b[39;00m\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results\n\u001b[1;32m 425\u001b[0m ]\n\u001b[1;32m 426\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_combine_llm_outputs([res\u001b[38;5;241m.\u001b[39mllm_output \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results])\n",
|
347 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_core/language_models/chat_models.py:411\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(messages):\n\u001b[1;32m 409\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 410\u001b[0m results\u001b[38;5;241m.\u001b[39mappend(\n\u001b[0;32m--> 411\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 412\u001b[0m \u001b[43m \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 413\u001b[0m \u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 414\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_managers\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_managers\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 417\u001b[0m )\n\u001b[1;32m 418\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 419\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n",
|
348 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_core/language_models/chat_models.py:632\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inspect\u001b[38;5;241m.\u001b[39msignature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 632\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 633\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 634\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 635\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 636\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate(messages, stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
|
349 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/langchain_openai/chat_models/base.py:548\u001b[0m, in \u001b[0;36mChatOpenAI._generate\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 546\u001b[0m message_dicts, params \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_message_dicts(messages, stop)\n\u001b[1;32m 547\u001b[0m params \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mparams, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs}\n\u001b[0;32m--> 548\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmessage_dicts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 549\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_chat_result(response)\n",
|
350 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_utils/_utils.py:277\u001b[0m, in \u001b[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 275\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 276\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
351 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/resources/chat/completions.py:581\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m 550\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 551\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m 552\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 579\u001b[0m timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m 580\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[0;32m--> 581\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 582\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 583\u001b[0m \u001b[43m \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 584\u001b[0m \u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m 585\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 586\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 587\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 588\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 589\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 590\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 592\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 593\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 594\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 595\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 596\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 597\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 598\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 599\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 600\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 601\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 602\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 603\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 604\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 605\u001b[0m \u001b[43m \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 606\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 607\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 608\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 609\u001b[0m \u001b[43m \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m 610\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 611\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 612\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 613\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 614\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
352 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:1232\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1218\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m 1219\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 1220\u001b[0m path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1227\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1228\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m 1229\u001b[0m opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m 1230\u001b[0m method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m 1231\u001b[0m )\n\u001b[0;32m-> 1232\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
|
353 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:921\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 912\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m 913\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 914\u001b[0m cast_to: Type[ResponseT],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 919\u001b[0m stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 920\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 921\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 922\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 923\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 924\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 925\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 926\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 927\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
|
354 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:997\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m 996\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m--> 997\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 998\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 999\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1000\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1001\u001b[0m \u001b[43m \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1002\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1003\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1004\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m 1007\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m 1008\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
|
355 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:1045\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1041\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m 1043\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1045\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1046\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1047\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1049\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1051\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
356 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:997\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 995\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m 996\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m--> 997\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 998\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 999\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1000\u001b[0m \u001b[43m \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1001\u001b[0m \u001b[43m \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1002\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1003\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1004\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m 1007\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m 1008\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
|
357 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:1045\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1041\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m 1042\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m 1043\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1045\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1046\u001b[0m \u001b[43m \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1047\u001b[0m \u001b[43m \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[43m \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1049\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1050\u001b[0m \u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1051\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
358 |
+
"File \u001b[0;32m~/miniconda3/envs/graph_rag/lib/python3.9/site-packages/openai/_base_client.py:1012\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m 1009\u001b[0m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m 1011\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1012\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1014\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m 1015\u001b[0m cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m 1016\u001b[0m options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1019\u001b[0m stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[1;32m 1020\u001b[0m )\n",
|
359 |
+
"\u001b[0;31mRateLimitError\u001b[0m: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}"
|
360 |
+
]
|
361 |
+
}
|
362 |
+
],
|
363 |
+
"source": [
|
364 |
+
"from tqdm import tqdm\n",
|
365 |
+
"\n",
|
366 |
+
"for i, d in tqdm(enumerate(documents), total=len(documents)):\n",
|
367 |
+
" extract_and_store_graph(d)"
|
368 |
+
]
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"metadata": {
|
372 |
+
"kernelspec": {
|
373 |
+
"display_name": "my_project_env",
|
374 |
+
"language": "python",
|
375 |
+
"name": "python3"
|
376 |
+
},
|
377 |
+
"language_info": {
|
378 |
+
"codemirror_mode": {
|
379 |
+
"name": "ipython",
|
380 |
+
"version": 3
|
381 |
+
},
|
382 |
+
"file_extension": ".py",
|
383 |
+
"mimetype": "text/x-python",
|
384 |
+
"name": "python",
|
385 |
+
"nbconvert_exporter": "python",
|
386 |
+
"pygments_lexer": "ipython3",
|
387 |
+
"version": "3.9.19"
|
388 |
+
}
|
389 |
+
},
|
390 |
+
"nbformat": 4,
|
391 |
+
"nbformat_minor": 2
|
392 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==1.23.2
|
2 |
+
ipython-ngql==0.11.3
|
3 |
+
llama_index==0.8.9
|
4 |
+
pyvis==0.3.2
|
5 |
+
tornado>=6.0.3,<6.2
|
6 |
+
packaging>=23.2,<24.0
|
7 |
+
sqlalchemy>=2.0.15
|
8 |
+
dataclasses-json==0.6.4
|
9 |
+
distro==1.9.0
|
10 |
+
h11==0.14.0
|
11 |
+
httpcore==1.0.5
|
12 |
+
httplib2==0.22.0
|
13 |
+
httpx==0.27.0
|
14 |
+
jsonpatch==1.33
|
15 |
+
jsonpickle==3.0.4
|
16 |
+
langchain==0.1.16
|
17 |
+
langchain-community==0.0.34
|
18 |
+
langchain-core==0.1.45
|
19 |
+
langchain-text-splitters==0.0.1
|
20 |
+
langsmith==0.1.49
|
21 |
+
marshmallow==3.21.1
|
22 |
+
mypy-extensions==1.0.0
|
23 |
+
nebula3-python==3.5.0
|
24 |
+
orjson==3.10.1
|
25 |
+
tenacity==8.2.3
|
26 |
+
tiktoken==0.6.0
|
27 |
+
typing-inspect==0.9.0
|