MartaTT commited on
Commit
6016cf8
·
verified ·
1 Parent(s): 26994ad

Upload 7 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huggyllama/llama-7b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "huggyllama/llama-7b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": "unsloth",
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj",
25
+ "k_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34ef2a147717b4436b3836b03a8137527cc2e469b6ff761cc92bb014557e25f3
3
+ size 33588528
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "<unk>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
trainer_state.json ADDED
@@ -0,0 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8182997107505798,
3
+ "best_model_checkpoint": "outputs/checkpoint-92",
4
+ "epoch": 1.0,
5
+ "eval_steps": 23,
6
+ "global_step": 92,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010869565217391304,
13
+ "grad_norm": 0.25948596000671387,
14
+ "learning_rate": 0.001,
15
+ "loss": 2.557,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.021739130434782608,
20
+ "grad_norm": 0.6524776220321655,
21
+ "learning_rate": 0.001,
22
+ "loss": 2.2351,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.03260869565217391,
27
+ "grad_norm": 0.5083250403404236,
28
+ "learning_rate": 0.001,
29
+ "loss": 1.9823,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.043478260869565216,
34
+ "grad_norm": 2.7111644744873047,
35
+ "learning_rate": 0.001,
36
+ "loss": 1.766,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.05434782608695652,
41
+ "grad_norm": 0.5816826224327087,
42
+ "learning_rate": 0.001,
43
+ "loss": 1.5714,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.06521739130434782,
48
+ "grad_norm": 0.3153815269470215,
49
+ "learning_rate": 0.001,
50
+ "loss": 1.4747,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.07608695652173914,
55
+ "grad_norm": 0.23670993745326996,
56
+ "learning_rate": 0.001,
57
+ "loss": 1.4613,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.08695652173913043,
62
+ "grad_norm": 0.22481270134449005,
63
+ "learning_rate": 0.001,
64
+ "loss": 1.3309,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.09782608695652174,
69
+ "grad_norm": 0.19224806129932404,
70
+ "learning_rate": 0.001,
71
+ "loss": 1.2744,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.10869565217391304,
76
+ "grad_norm": 0.4313323199748993,
77
+ "learning_rate": 0.001,
78
+ "loss": 1.2549,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.11956521739130435,
83
+ "grad_norm": 0.21521781384944916,
84
+ "learning_rate": 0.001,
85
+ "loss": 1.2236,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.13043478260869565,
90
+ "grad_norm": 0.22998858988285065,
91
+ "learning_rate": 0.001,
92
+ "loss": 1.2058,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.14130434782608695,
97
+ "grad_norm": 0.912493109703064,
98
+ "learning_rate": 0.001,
99
+ "loss": 1.2498,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.15217391304347827,
104
+ "grad_norm": 0.9947443008422852,
105
+ "learning_rate": 0.001,
106
+ "loss": 1.1692,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.16304347826086957,
111
+ "grad_norm": 0.6725525259971619,
112
+ "learning_rate": 0.001,
113
+ "loss": 1.1741,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.17391304347826086,
118
+ "grad_norm": 0.4825955927371979,
119
+ "learning_rate": 0.001,
120
+ "loss": 1.1859,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.18478260869565216,
125
+ "grad_norm": 0.5571773648262024,
126
+ "learning_rate": 0.001,
127
+ "loss": 1.246,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1956521739130435,
132
+ "grad_norm": 0.5893177390098572,
133
+ "learning_rate": 0.001,
134
+ "loss": 1.2051,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.20652173913043478,
139
+ "grad_norm": 0.3296414613723755,
140
+ "learning_rate": 0.001,
141
+ "loss": 1.1514,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.21739130434782608,
146
+ "grad_norm": 192.71990966796875,
147
+ "learning_rate": 0.001,
148
+ "loss": 3.0997,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.22826086956521738,
153
+ "grad_norm": 0.42136579751968384,
154
+ "learning_rate": 0.001,
155
+ "loss": 1.0657,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.2391304347826087,
160
+ "grad_norm": 0.7099547982215881,
161
+ "learning_rate": 0.001,
162
+ "loss": 1.0948,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.25,
167
+ "grad_norm": 20.096664428710938,
168
+ "learning_rate": 0.001,
169
+ "loss": 1.2483,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.25,
174
+ "eval_loss": 1.2063277959823608,
175
+ "eval_runtime": 58.817,
176
+ "eval_samples_per_second": 29.855,
177
+ "eval_steps_per_second": 3.74,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.2608695652173913,
182
+ "grad_norm": 189.78805541992188,
183
+ "learning_rate": 0.001,
184
+ "loss": 1.1614,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.2717391304347826,
189
+ "grad_norm": 169.01876831054688,
190
+ "learning_rate": 0.001,
191
+ "loss": 2.2421,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.2826086956521739,
196
+ "grad_norm": 3.0187716484069824,
197
+ "learning_rate": 0.001,
198
+ "loss": 1.1622,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.29347826086956524,
203
+ "grad_norm": 0.2984677851200104,
204
+ "learning_rate": 0.001,
205
+ "loss": 1.1179,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.30434782608695654,
210
+ "grad_norm": 0.3879133462905884,
211
+ "learning_rate": 0.001,
212
+ "loss": 1.0627,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.31521739130434784,
217
+ "grad_norm": 0.3028254806995392,
218
+ "learning_rate": 0.001,
219
+ "loss": 1.0891,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.32608695652173914,
224
+ "grad_norm": 0.22070440649986267,
225
+ "learning_rate": 0.001,
226
+ "loss": 1.034,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.33695652173913043,
231
+ "grad_norm": 0.21481624245643616,
232
+ "learning_rate": 0.001,
233
+ "loss": 1.0961,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.34782608695652173,
238
+ "grad_norm": 0.21487851440906525,
239
+ "learning_rate": 0.001,
240
+ "loss": 1.0287,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.358695652173913,
245
+ "grad_norm": 0.23472800850868225,
246
+ "learning_rate": 0.001,
247
+ "loss": 0.9764,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.3695652173913043,
252
+ "grad_norm": 0.2811538279056549,
253
+ "learning_rate": 0.001,
254
+ "loss": 1.0515,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.3804347826086957,
259
+ "grad_norm": 0.505190908908844,
260
+ "learning_rate": 0.001,
261
+ "loss": 1.0424,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.391304347826087,
266
+ "grad_norm": 0.42631781101226807,
267
+ "learning_rate": 0.001,
268
+ "loss": 1.0337,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.40217391304347827,
273
+ "grad_norm": 1.035503625869751,
274
+ "learning_rate": 0.001,
275
+ "loss": 0.9914,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.41304347826086957,
280
+ "grad_norm": 0.17122802138328552,
281
+ "learning_rate": 0.001,
282
+ "loss": 0.9921,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.42391304347826086,
287
+ "grad_norm": 0.45569631457328796,
288
+ "learning_rate": 0.001,
289
+ "loss": 0.9887,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.43478260869565216,
294
+ "grad_norm": 0.44947272539138794,
295
+ "learning_rate": 0.001,
296
+ "loss": 1.0364,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.44565217391304346,
301
+ "grad_norm": 0.20161911845207214,
302
+ "learning_rate": 0.001,
303
+ "loss": 0.9919,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.45652173913043476,
308
+ "grad_norm": 0.16475366055965424,
309
+ "learning_rate": 0.001,
310
+ "loss": 0.9565,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.4673913043478261,
315
+ "grad_norm": 0.14725033938884735,
316
+ "learning_rate": 0.001,
317
+ "loss": 0.966,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.4782608695652174,
322
+ "grad_norm": 0.14876875281333923,
323
+ "learning_rate": 0.001,
324
+ "loss": 0.9352,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.4891304347826087,
329
+ "grad_norm": 0.17598117887973785,
330
+ "learning_rate": 0.001,
331
+ "loss": 0.9868,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.5,
336
+ "grad_norm": 0.1724141240119934,
337
+ "learning_rate": 0.001,
338
+ "loss": 0.9633,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.5,
343
+ "eval_loss": 0.9434607028961182,
344
+ "eval_runtime": 58.8635,
345
+ "eval_samples_per_second": 29.832,
346
+ "eval_steps_per_second": 3.737,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.5108695652173914,
351
+ "grad_norm": 0.16071145236492157,
352
+ "learning_rate": 0.001,
353
+ "loss": 0.8422,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.5217391304347826,
358
+ "grad_norm": 0.15899214148521423,
359
+ "learning_rate": 0.001,
360
+ "loss": 0.8679,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.532608695652174,
365
+ "grad_norm": 0.1507413685321808,
366
+ "learning_rate": 0.001,
367
+ "loss": 0.9633,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.5434782608695652,
372
+ "grad_norm": 0.1445205807685852,
373
+ "learning_rate": 0.001,
374
+ "loss": 0.9291,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.5543478260869565,
379
+ "grad_norm": 0.1479858011007309,
380
+ "learning_rate": 0.001,
381
+ "loss": 0.9272,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.5652173913043478,
386
+ "grad_norm": 0.13822589814662933,
387
+ "learning_rate": 0.001,
388
+ "loss": 0.9729,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.5760869565217391,
393
+ "grad_norm": 0.16067130863666534,
394
+ "learning_rate": 0.001,
395
+ "loss": 0.9124,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.5869565217391305,
400
+ "grad_norm": 0.13832823932170868,
401
+ "learning_rate": 0.001,
402
+ "loss": 0.9292,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.5978260869565217,
407
+ "grad_norm": 0.1415243297815323,
408
+ "learning_rate": 0.001,
409
+ "loss": 0.8777,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.6086956521739131,
414
+ "grad_norm": 0.1511407047510147,
415
+ "learning_rate": 0.001,
416
+ "loss": 0.9124,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.6195652173913043,
421
+ "grad_norm": 0.13163386285305023,
422
+ "learning_rate": 0.001,
423
+ "loss": 0.9266,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.6304347826086957,
428
+ "grad_norm": 0.1511267125606537,
429
+ "learning_rate": 0.001,
430
+ "loss": 0.8583,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.6413043478260869,
435
+ "grad_norm": 0.1495072990655899,
436
+ "learning_rate": 0.001,
437
+ "loss": 0.9624,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.6521739130434783,
442
+ "grad_norm": 0.13261999189853668,
443
+ "learning_rate": 0.001,
444
+ "loss": 0.8063,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.6630434782608695,
449
+ "grad_norm": 0.14297187328338623,
450
+ "learning_rate": 0.001,
451
+ "loss": 0.8697,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.6739130434782609,
456
+ "grad_norm": 0.12715451419353485,
457
+ "learning_rate": 0.001,
458
+ "loss": 0.922,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.6847826086956522,
463
+ "grad_norm": 0.13431622087955475,
464
+ "learning_rate": 0.001,
465
+ "loss": 0.9276,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.6956521739130435,
470
+ "grad_norm": 0.1349351555109024,
471
+ "learning_rate": 0.001,
472
+ "loss": 0.8976,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.7065217391304348,
477
+ "grad_norm": 0.1352081298828125,
478
+ "learning_rate": 0.001,
479
+ "loss": 0.8791,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.717391304347826,
484
+ "grad_norm": 0.14080628752708435,
485
+ "learning_rate": 0.001,
486
+ "loss": 0.9413,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.7282608695652174,
491
+ "grad_norm": 0.13674688339233398,
492
+ "learning_rate": 0.001,
493
+ "loss": 0.7708,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.7391304347826086,
498
+ "grad_norm": 0.14996537566184998,
499
+ "learning_rate": 0.001,
500
+ "loss": 0.8691,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.75,
505
+ "grad_norm": 0.1501636952161789,
506
+ "learning_rate": 0.001,
507
+ "loss": 0.9026,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.75,
512
+ "eval_loss": 0.864105761051178,
513
+ "eval_runtime": 58.719,
514
+ "eval_samples_per_second": 29.905,
515
+ "eval_steps_per_second": 3.747,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.7608695652173914,
520
+ "grad_norm": 0.1360858827829361,
521
+ "learning_rate": 0.001,
522
+ "loss": 0.8336,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.7717391304347826,
527
+ "grad_norm": 0.1359189748764038,
528
+ "learning_rate": 0.001,
529
+ "loss": 0.8056,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.782608695652174,
534
+ "grad_norm": 0.13545744121074677,
535
+ "learning_rate": 0.001,
536
+ "loss": 0.9322,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.7934782608695652,
541
+ "grad_norm": 0.13769179582595825,
542
+ "learning_rate": 0.001,
543
+ "loss": 0.8573,
544
+ "step": 73
545
+ },
546
+ {
547
+ "epoch": 0.8043478260869565,
548
+ "grad_norm": 0.13420400023460388,
549
+ "learning_rate": 0.001,
550
+ "loss": 0.8809,
551
+ "step": 74
552
+ },
553
+ {
554
+ "epoch": 0.8152173913043478,
555
+ "grad_norm": 0.13306210935115814,
556
+ "learning_rate": 0.001,
557
+ "loss": 0.9157,
558
+ "step": 75
559
+ },
560
+ {
561
+ "epoch": 0.8260869565217391,
562
+ "grad_norm": 0.13138633966445923,
563
+ "learning_rate": 0.001,
564
+ "loss": 0.9247,
565
+ "step": 76
566
+ },
567
+ {
568
+ "epoch": 0.8369565217391305,
569
+ "grad_norm": 0.14224551618099213,
570
+ "learning_rate": 0.001,
571
+ "loss": 0.8511,
572
+ "step": 77
573
+ },
574
+ {
575
+ "epoch": 0.8478260869565217,
576
+ "grad_norm": 0.13072927296161652,
577
+ "learning_rate": 0.001,
578
+ "loss": 0.8806,
579
+ "step": 78
580
+ },
581
+ {
582
+ "epoch": 0.8586956521739131,
583
+ "grad_norm": 0.12070866674184799,
584
+ "learning_rate": 0.001,
585
+ "loss": 0.8334,
586
+ "step": 79
587
+ },
588
+ {
589
+ "epoch": 0.8695652173913043,
590
+ "grad_norm": 0.12449181079864502,
591
+ "learning_rate": 0.001,
592
+ "loss": 0.8746,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.8804347826086957,
597
+ "grad_norm": 0.13722895085811615,
598
+ "learning_rate": 0.001,
599
+ "loss": 0.837,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.8913043478260869,
604
+ "grad_norm": 0.128278911113739,
605
+ "learning_rate": 0.001,
606
+ "loss": 0.8383,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.9021739130434783,
611
+ "grad_norm": 0.14108207821846008,
612
+ "learning_rate": 0.001,
613
+ "loss": 0.8355,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.9130434782608695,
618
+ "grad_norm": 0.12417194992303848,
619
+ "learning_rate": 0.001,
620
+ "loss": 0.8296,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.9239130434782609,
625
+ "grad_norm": 0.1307547390460968,
626
+ "learning_rate": 0.001,
627
+ "loss": 0.7873,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.9347826086956522,
632
+ "grad_norm": 0.15271253883838654,
633
+ "learning_rate": 0.001,
634
+ "loss": 0.8745,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.9456521739130435,
639
+ "grad_norm": 0.12832346558570862,
640
+ "learning_rate": 0.001,
641
+ "loss": 0.7989,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.9565217391304348,
646
+ "grad_norm": 0.1639142632484436,
647
+ "learning_rate": 0.001,
648
+ "loss": 0.8138,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.967391304347826,
653
+ "grad_norm": 0.17407165467739105,
654
+ "learning_rate": 0.001,
655
+ "loss": 0.8698,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.9782608695652174,
660
+ "grad_norm": 0.14874844253063202,
661
+ "learning_rate": 0.001,
662
+ "loss": 0.8261,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.9891304347826086,
667
+ "grad_norm": 0.1823408007621765,
668
+ "learning_rate": 0.001,
669
+ "loss": 0.8961,
670
+ "step": 91
671
+ },
672
+ {
673
+ "epoch": 1.0,
674
+ "grad_norm": 0.18705643713474274,
675
+ "learning_rate": 0.001,
676
+ "loss": 0.8455,
677
+ "step": 92
678
+ },
679
+ {
680
+ "epoch": 1.0,
681
+ "eval_loss": 0.8182997107505798,
682
+ "eval_runtime": 58.7326,
683
+ "eval_samples_per_second": 29.898,
684
+ "eval_steps_per_second": 3.746,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 1.0,
689
+ "step": 92,
690
+ "total_flos": 2.3790723506425037e+17,
691
+ "train_loss": 1.0809093979389772,
692
+ "train_runtime": 1602.5337,
693
+ "train_samples_per_second": 7.305,
694
+ "train_steps_per_second": 0.057
695
+ }
696
+ ],
697
+ "logging_steps": 1,
698
+ "max_steps": 92,
699
+ "num_input_tokens_seen": 0,
700
+ "num_train_epochs": 1,
701
+ "save_steps": 23,
702
+ "stateful_callbacks": {
703
+ "EarlyStoppingCallback": {
704
+ "args": {
705
+ "early_stopping_patience": 5,
706
+ "early_stopping_threshold": 0.0
707
+ },
708
+ "attributes": {
709
+ "early_stopping_patience_counter": 0
710
+ }
711
+ },
712
+ "TrainerControl": {
713
+ "args": {
714
+ "should_epoch_stop": false,
715
+ "should_evaluate": false,
716
+ "should_log": false,
717
+ "should_save": true,
718
+ "should_training_stop": true
719
+ },
720
+ "attributes": {}
721
+ }
722
+ },
723
+ "total_flos": 2.3790723506425037e+17,
724
+ "train_batch_size": 128,
725
+ "trial_name": null,
726
+ "trial_params": null
727
+ }