--- language: - ko license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer base_model: openai/whisper-large datasets: - Marcusxx/gwanju metrics: - wer model-index: - name: gwanju_largeWER_model results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Marcusxx/gwanju type: Marcusxx/gwanju args: 'config: ko, split: valid' metrics: - type: wer value: 41.85458286890166 name: Wer --- # gwanju_largeWER_model This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Marcusxx/gwanju dataset. It achieves the following results on the evaluation set: - Loss: 0.3334 - Wer: 41.8546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4683 | 0.0741 | 250 | 0.4884 | 104.4328 | | 0.4578 | 0.1482 | 500 | 0.4522 | 55.8304 | | 0.4675 | 0.2223 | 750 | 0.4379 | 65.3948 | | 0.4338 | 0.2964 | 1000 | 0.4225 | 65.4206 | | 0.4547 | 0.3705 | 1250 | 0.4023 | 63.5814 | | 0.3676 | 0.4446 | 1500 | 0.3914 | 47.9551 | | 0.3752 | 0.5187 | 1750 | 0.3840 | 48.3838 | | 0.3584 | 0.5928 | 2000 | 0.3745 | 44.8641 | | 0.4221 | 0.6669 | 2250 | 0.3638 | 42.4548 | | 0.3432 | 0.7410 | 2500 | 0.3563 | 42.7206 | | 0.3993 | 0.8151 | 2750 | 0.3497 | 44.7955 | | 0.3448 | 0.8892 | 3000 | 0.3437 | 43.3722 | | 0.3441 | 0.9632 | 3250 | 0.3381 | 40.4270 | | 0.2317 | 1.0373 | 3500 | 0.3350 | 39.5782 | | 0.2063 | 1.1114 | 3750 | 0.3339 | 40.8385 | | 0.2016 | 1.1855 | 4000 | 0.3334 | 41.8546 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.2+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1