MarcusAGray commited on
Commit
6241ba0
·
1 Parent(s): 2289898

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 816.55 +/- 32.99
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08e69fd3a199ca8cee6a7119b801da7df3eb7bf05062c9a202c3efe4c101315f
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7392c2ac10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7392c2aca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7392c2ad30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7392c2adc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7392c2ae50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7392c2aee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7392c2af70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7392c2f040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7392c2f0d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7392c2f160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7392c2f1f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7392c2f280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7392c2b900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 500000,
63
+ "_total_timesteps": 500000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679866625020238344,
68
+ "learning_rate": 0.001,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMWl8T8CE+Q+EzTtPv9nxT+4+qe9sXEAv8liOL8ukxK/sANgP92SD7xfJG0+/UTNPiUaVj/K1uW/gumRPmfrCD3AViG/LQ1VP1P8ur/nXxs952FDPz7LHD/uD2i/BgMvvUYsBz+PpgE/kegHP6juG8BcRO2+5ovsPxa9lr8v/0a9yB3xPZGkGT69QuG8QgiDvBXPlz5vMei97uyGvpiMyD257aY/o21PvXfLkz58J/889UGVvk56o727hoI+VsoYPnb1rz56Gxq+7tPavnl/dr1GLAc/j6YBP5HoBz99JNI+4O5KvxNGAj8lreA+o5xkPteo4b4Ku9Q9kWIwPv/ntzx8FGA/a5QEvBUjeL7ilEe+FcO7vnJsUb2QQ44+fyKfPtjCGD1hdFK+XPH0PryQPD11uKE+0wd8vUfyP79UuzM+RiwHP4+mAT+R6Ac/fSTSPrvfqr7l0CK+x1oMP+hpF0A2FPc/fmWpPajPwj0kbQe+VZp4vmML9z6PvKW+pUWnv1Z90LyJngQ/bbCTPj4dZT3E3wy/CN8pP2L/1j4M5o2/MxU/viU1Ir3NzM2+6nhPvVVq8r+PpgE/kegHP30k0j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlJmE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvzvLvQAAAAB+odu/AAAAADoETD0AAAAAN2ncPwAAAABciPI8AAAAALeT6D8AAAAAcRwKPQAAAACZs+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT7aKswAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD4mEj4AAAAAwfD4vwAAAABn6Yk8AAAAANK69T8AAAAAYOfYPQAAAACaVO4/AAAAAFRPUbwAAAAA7RHsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMU2ojUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfEwu9AAAAAKMH9L8AAAAA+TD8PQAAAAApWts/AAAAAE3tBLsAAAAAlZXtPwAAAAChONU9AAAAABWM7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDoQ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwhWmvQAAAACcLdu/AAAAAO3E2b0AAAAAbArsPwAAAAC5Vx09AAAAANdi9z8AAAAArSOjvQAAAABq2Nq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIkYf1YhdMWMAWyUTegDjAF0lEdApwgapo9LYnV9lChoBkdAiRlCDM/yG2gHTegDaAhHQKcNpfv4M4N1fZQoaAZHQISGBPIn0CloB03oA2gIR0CnDqjsMRYjdX2UKGgGR0CFbl/3FkxzaAdN6ANoCEdApxHf420iQnV9lChoBkdAiC4y/KyOaWgHTegDaAhHQKcUiinpB5Z1fZQoaAZHQIN6vztkWh1oB03oA2gIR0CnGhTZpSJkdX2UKGgGR0CHkzekYXO4aAdN6ANoCEdApxsVhuwX7HV9lChoBkdAhzZGL9/BnGgHTegDaAhHQKcfoOGTLW91fZQoaAZHQIiQ5xgiNbVoB03oA2gIR0CnI9db5dnkdX2UKGgGR0CKY2d6LOzIaAdN6ANoCEdApynuwkgOjXV9lChoBkdAiO889W6shmgHTegDaAhHQKcq8iJO32F1fZQoaAZHQIoHMypJf6ZoB03oA2gIR0CnLjlbNbC8dX2UKGgGR0CIycYhMajvaAdN6ANoCEdApzDpQizLOnV9lChoBkdAiA1QpvxYrGgHTegDaAhHQKc2grCm/Fl1fZQoaAZHQIonH5eqrBFoB03oA2gIR0CnN4Ln1WbPdX2UKGgGR0CKSMMHbAUMaAdN6ANoCEdApzti6STyKHV9lChoBkdAh2crqdH2AWgHTegDaAhHQKc/eirT6SF1fZQoaAZHQIl7SNfgJkZoB03oA2gIR0CnRnZXdTHbdX2UKGgGR0CJGS1uR9w4aAdN6ANoCEdAp0d4LZzxPXV9lChoBkdAhis+uvECNmgHTegDaAhHQKdKtMfzSTh1fZQoaAZHQIJ/RgLJCBxoB03oA2gIR0CnTWP4VRDUdX2UKGgGR0CGKbjkMkQgaAdN6ANoCEdAp1L6O3lS0nV9lChoBkdAiGZw84gieWgHTegDaAhHQKdUAnEVFhJ1fZQoaAZHQIeIN/tpmEpoB03oA2gIR0CnVzf1YhdMdX2UKGgGR0CJ4+JBPbfxaAdN6ANoCEdAp1rtU6xPf3V9lChoBkdAiCdjcEeQuGgHTegDaAhHQKdiwyv9tMx1fZQoaAZHQInw4N0/4ZdoB03oA2gIR0CnY8NWU8msdX2UKGgGR0CIM5LOAy2yaAdN6ANoCEdAp2bvOpsGgXV9lChoBkdAiQqM6JZW72gHTegDaAhHQKdpru2qkuZ1fZQoaAZHQIblSOtGNJhoB03oA2gIR0Cnbyjh1klNdX2UKGgGR0CKCME7GNrCaAdN6ANoCEdAp3Au9alk6XV9lChoBkdAiEQkal1r7GgHTegDaAhHQKdzXOafBep1fZQoaAZHQIgIRLXcxj9oB03oA2gIR0CndlwCr92pdX2UKGgGR0CGH78w5/9YaAdN6ANoCEdAp36+5SWJJ3V9lChoBkdAh3+OZkTYd2gHTegDaAhHQKeABfx+a0B1fZQoaAZHQIewV4A0bcZoB03oA2gIR0CngyrupjtpdX2UKGgGR0CHxoBT4tYkaAdN6ANoCEdAp4XWFpPAPHV9lChoBkdAic4peeFtbmgHTegDaAhHQKeLRe3QUpN1fZQoaAZHQIfh7xXnyNJoB03oA2gIR0CnjEsZxaPkdX2UKGgGR0CKOiliz9jxaAdN6ANoCEdAp49yZ2IO6XV9lChoBkdAhul0+TvAoGgHTegDaAhHQKeSFrKNhmZ1fZQoaAZHQIbsf2saKk5oB03oA2gIR0CnmX6GpMpPdX2UKGgGR0CFcvZ5AyEdaAdN6ANoCEdAp5sOEf1YhnV9lChoBkdAkOibGJememgHTegDaAhHQKefDyPMjeN1fZQoaAZHQIpPeYjSofloB03oA2gIR0Cnoa+8XenAdX2UKGgGR0CGG8vvBrN4aAdN6ANoCEdAp6dOIqLCN3V9lChoBkdAifwZE2HclGgHTegDaAhHQKeoUIP9UCJ1fZQoaAZHQInrJmukk8loB03oA2gIR0Cnq3LUCq6wdX2UKGgGR0CMkDfeDWbxaAdN6ANoCEdAp64YE6kqMHV9lChoBkdAjQiNgSeyzGgHTegDaAhHQKe0aGSIP9V1fZQoaAZHQIczpG4I8hdoB03oA2gIR0CntdvqcEvCdX2UKGgGR0CFtV/6wdKeaAdN6ANoCEdAp7rIaef7JnV9lChoBkdAiX+096kZaWgHTegDaAhHQKe9sAcT8Hh1fZQoaAZHQIiaUqOLiuNoB03oA2gIR0CnwynwG4ZudX2UKGgGR0CM5rBcAzYVaAdN6ANoCEdAp8QwDFId2nV9lChoBkdAi7LCudPLxWgHTegDaAhHQKfHV69kBjp1fZQoaAZHQIxqAHE/B31oB03oA2gIR0CnyfUWVNYbdX2UKGgGR0CMpAa6z3RHaAdN6ANoCEdAp8+FliBoVXV9lChoBkdAixbXV9Wp62gHTegDaAhHQKfQ/NATqSp1fZQoaAZHQJA2uFEiMYNoB03oA2gIR0Cn1dIk7fYSdX2UKGgGR0CIpPSJj2BbaAdN6ANoCEdAp9ndxuKoAHV9lChoBkdAjULDqGDcumgHTegDaAhHQKffbxSYPXl1fZQoaAZHQIxz2hEjPfNoB03oA2gIR0Cn4HbuDzy0dX2UKGgGR0CORPC7btZ3aAdN6ANoCEdAp+O3/zasZHV9lChoBkdAidmYhUzbe2gHTegDaAhHQKfmaT238XN1fZQoaAZHQIfIEQCjk+5oB03oA2gIR0Cn69vT5O8DdX2UKGgGR0CK0cAZsKsuaAdN6ANoCEdAp+zbwOOKfnV9lChoBkdAiokJeNT99GgHTegDaAhHQKfxKmaYu011fZQoaAZHQItBeWhRIjJoB03oA2gIR0Cn9VI371qWdX2UKGgGR0CK4By3CsOoaAdN6ANoCEdAp/uRQrMC93V9lChoBkdAh6NRdhRZU2gHTegDaAhHQKf8lbh3qzJ1fZQoaAZHQI0p1aEBbOhoB03oA2gIR0Cn/7K2KEWZdX2UKGgGR0CLXIuQIUrTaAdN6ANoCEdAqAJUcbR4QnV9lChoBkdAjiTv/7zkIWgHTegDaAhHQKgHwWhRIjJ1fZQoaAZHQIrn58MNMGpoB03oA2gIR0CoCMSJbdJrdX2UKGgGR0CJE8ez2OABaAdN6ANoCEdAqAwMe6qbSnV9lChoBkdAiV8r2HtWuGgHTegDaAhHQKgP6q7ROUN1fZQoaAZHQIkp4ZbY9PloB03oA2gIR0CoF3imEXchdX2UKGgGR0CCaCfDk2gnaAdN6ANoCEdAqBiIgq3EynV9lChoBkdAiCAwRwqAjWgHTegDaAhHQKgbvCqIacZ1fZQoaAZHQIgRJ2KVII5oB03oA2gIR0CoHm09yLhrdX2UKGgGR0CKBmT9KmKqaAdN6ANoCEdAqCQLp3X7L3V9lChoBkdAilTsKCxu9GgHTegDaAhHQKglCb/ffoB1fZQoaAZHQIuTXPHDJltoB03oA2gIR0CoKDfWMCLddX2UKGgGR0CJClegL7XQaAdN6ANoCEdAqCth7mdRSHV9lChoBkdAjsaYZMtbtGgHTegDaAhHQKgzrQw9JSR1fZQoaAZHQIiJ0TWXkYJoB03oA2gIR0CoNK9n9NvgdX2UKGgGR0CQHRZBcAzYaAdN6ANoCEdAqDfR2pyZKHV9lChoBkdAhamESuhbn2gHTegDaAhHQKg6eT0xubZ1fZQoaAZHQI0he2PT5O9oB03oA2gIR0CoP/1fmcOLdX2UKGgGR0CLEBYNiH6/aAdN6ANoCEdAqEEDZnL7oHV9lChoBkdAihJ4eLehwmgHTegDaAhHQKhEM4//vOR1fZQoaAZHQIo+0+C9RJpoB03oA2gIR0CoRtlUQ04zdX2UKGgGR0CKeEmx+rlvaAdN6ANoCEdAqE7PYcvM83V9lChoBkdAjA2PM8ox6GgHTegDaAhHQKhQYtxuKoB1fZQoaAZHQIhHbz5GjKxoB03oA2gIR0CoVAnZ9NN8dX2UKGgGR0CKSwJKJ2t/aAdN6ANoCEdAqFa6zqrzXnV9lChoBkdAiWtyFXaJymgHTegDaAhHQKhcP16mfoR1fZQoaAZHQIf7jRQaaThoB03oA2gIR0CoXUWIfr8jdX2UKGgGR0CMc2DTz/ZNaAdN6ANoCEdAqGBrAk9lmXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 15625,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 1.0,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": true
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c80e8c5ccd9965751fcc37e97f6cf026644144bfd85e490c58c19fe502a9ed97
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8a7f28586350673399fb05e5db392dd8ee300b0b97ff9871665369cacc17a81
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7392c2ac10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7392c2aca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7392c2ad30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7392c2adc0>", "_build": "<function ActorCriticPolicy._build at 0x7f7392c2ae50>", "forward": "<function ActorCriticPolicy.forward at 0x7f7392c2aee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7392c2af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7392c2f040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7392c2f0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7392c2f160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7392c2f1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7392c2f280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7392c2b900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679866625020238344, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMWl8T8CE+Q+EzTtPv9nxT+4+qe9sXEAv8liOL8ukxK/sANgP92SD7xfJG0+/UTNPiUaVj/K1uW/gumRPmfrCD3AViG/LQ1VP1P8ur/nXxs952FDPz7LHD/uD2i/BgMvvUYsBz+PpgE/kegHP6juG8BcRO2+5ovsPxa9lr8v/0a9yB3xPZGkGT69QuG8QgiDvBXPlz5vMei97uyGvpiMyD257aY/o21PvXfLkz58J/889UGVvk56o727hoI+VsoYPnb1rz56Gxq+7tPavnl/dr1GLAc/j6YBP5HoBz99JNI+4O5KvxNGAj8lreA+o5xkPteo4b4Ku9Q9kWIwPv/ntzx8FGA/a5QEvBUjeL7ilEe+FcO7vnJsUb2QQ44+fyKfPtjCGD1hdFK+XPH0PryQPD11uKE+0wd8vUfyP79UuzM+RiwHP4+mAT+R6Ac/fSTSPrvfqr7l0CK+x1oMP+hpF0A2FPc/fmWpPajPwj0kbQe+VZp4vmML9z6PvKW+pUWnv1Z90LyJngQ/bbCTPj4dZT3E3wy/CN8pP2L/1j4M5o2/MxU/viU1Ir3NzM2+6nhPvVVq8r+PpgE/kegHP30k0j6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAlJmE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvzvLvQAAAAB+odu/AAAAADoETD0AAAAAN2ncPwAAAABciPI8AAAAALeT6D8AAAAAcRwKPQAAAACZs+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT7aKswAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD4mEj4AAAAAwfD4vwAAAABn6Yk8AAAAANK69T8AAAAAYOfYPQAAAACaVO4/AAAAAFRPUbwAAAAA7RHsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMU2ojUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDfEwu9AAAAAKMH9L8AAAAA+TD8PQAAAAApWts/AAAAAE3tBLsAAAAAlZXtPwAAAAChONU9AAAAABWM7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDoQ42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwhWmvQAAAACcLdu/AAAAAO3E2b0AAAAAbArsPwAAAAC5Vx09AAAAANdi9z8AAAAArSOjvQAAAABq2Nq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIkYf1YhdMWMAWyUTegDjAF0lEdApwgapo9LYnV9lChoBkdAiRlCDM/yG2gHTegDaAhHQKcNpfv4M4N1fZQoaAZHQISGBPIn0CloB03oA2gIR0CnDqjsMRYjdX2UKGgGR0CFbl/3FkxzaAdN6ANoCEdApxHf420iQnV9lChoBkdAiC4y/KyOaWgHTegDaAhHQKcUiinpB5Z1fZQoaAZHQIN6vztkWh1oB03oA2gIR0CnGhTZpSJkdX2UKGgGR0CHkzekYXO4aAdN6ANoCEdApxsVhuwX7HV9lChoBkdAhzZGL9/BnGgHTegDaAhHQKcfoOGTLW91fZQoaAZHQIiQ5xgiNbVoB03oA2gIR0CnI9db5dnkdX2UKGgGR0CKY2d6LOzIaAdN6ANoCEdApynuwkgOjXV9lChoBkdAiO889W6shmgHTegDaAhHQKcq8iJO32F1fZQoaAZHQIoHMypJf6ZoB03oA2gIR0CnLjlbNbC8dX2UKGgGR0CIycYhMajvaAdN6ANoCEdApzDpQizLOnV9lChoBkdAiA1QpvxYrGgHTegDaAhHQKc2grCm/Fl1fZQoaAZHQIonH5eqrBFoB03oA2gIR0CnN4Ln1WbPdX2UKGgGR0CKSMMHbAUMaAdN6ANoCEdApzti6STyKHV9lChoBkdAh2crqdH2AWgHTegDaAhHQKc/eirT6SF1fZQoaAZHQIl7SNfgJkZoB03oA2gIR0CnRnZXdTHbdX2UKGgGR0CJGS1uR9w4aAdN6ANoCEdAp0d4LZzxPXV9lChoBkdAhis+uvECNmgHTegDaAhHQKdKtMfzSTh1fZQoaAZHQIJ/RgLJCBxoB03oA2gIR0CnTWP4VRDUdX2UKGgGR0CGKbjkMkQgaAdN6ANoCEdAp1L6O3lS0nV9lChoBkdAiGZw84gieWgHTegDaAhHQKdUAnEVFhJ1fZQoaAZHQIeIN/tpmEpoB03oA2gIR0CnVzf1YhdMdX2UKGgGR0CJ4+JBPbfxaAdN6ANoCEdAp1rtU6xPf3V9lChoBkdAiCdjcEeQuGgHTegDaAhHQKdiwyv9tMx1fZQoaAZHQInw4N0/4ZdoB03oA2gIR0CnY8NWU8msdX2UKGgGR0CIM5LOAy2yaAdN6ANoCEdAp2bvOpsGgXV9lChoBkdAiQqM6JZW72gHTegDaAhHQKdpru2qkuZ1fZQoaAZHQIblSOtGNJhoB03oA2gIR0Cnbyjh1klNdX2UKGgGR0CKCME7GNrCaAdN6ANoCEdAp3Au9alk6XV9lChoBkdAiEQkal1r7GgHTegDaAhHQKdzXOafBep1fZQoaAZHQIgIRLXcxj9oB03oA2gIR0CndlwCr92pdX2UKGgGR0CGH78w5/9YaAdN6ANoCEdAp36+5SWJJ3V9lChoBkdAh3+OZkTYd2gHTegDaAhHQKeABfx+a0B1fZQoaAZHQIewV4A0bcZoB03oA2gIR0CngyrupjtpdX2UKGgGR0CHxoBT4tYkaAdN6ANoCEdAp4XWFpPAPHV9lChoBkdAic4peeFtbmgHTegDaAhHQKeLRe3QUpN1fZQoaAZHQIfh7xXnyNJoB03oA2gIR0CnjEsZxaPkdX2UKGgGR0CKOiliz9jxaAdN6ANoCEdAp49yZ2IO6XV9lChoBkdAhul0+TvAoGgHTegDaAhHQKeSFrKNhmZ1fZQoaAZHQIbsf2saKk5oB03oA2gIR0CnmX6GpMpPdX2UKGgGR0CFcvZ5AyEdaAdN6ANoCEdAp5sOEf1YhnV9lChoBkdAkOibGJememgHTegDaAhHQKefDyPMjeN1fZQoaAZHQIpPeYjSofloB03oA2gIR0Cnoa+8XenAdX2UKGgGR0CGG8vvBrN4aAdN6ANoCEdAp6dOIqLCN3V9lChoBkdAifwZE2HclGgHTegDaAhHQKeoUIP9UCJ1fZQoaAZHQInrJmukk8loB03oA2gIR0Cnq3LUCq6wdX2UKGgGR0CMkDfeDWbxaAdN6ANoCEdAp64YE6kqMHV9lChoBkdAjQiNgSeyzGgHTegDaAhHQKe0aGSIP9V1fZQoaAZHQIczpG4I8hdoB03oA2gIR0CntdvqcEvCdX2UKGgGR0CFtV/6wdKeaAdN6ANoCEdAp7rIaef7JnV9lChoBkdAiX+096kZaWgHTegDaAhHQKe9sAcT8Hh1fZQoaAZHQIiaUqOLiuNoB03oA2gIR0CnwynwG4ZudX2UKGgGR0CM5rBcAzYVaAdN6ANoCEdAp8QwDFId2nV9lChoBkdAi7LCudPLxWgHTegDaAhHQKfHV69kBjp1fZQoaAZHQIxqAHE/B31oB03oA2gIR0CnyfUWVNYbdX2UKGgGR0CMpAa6z3RHaAdN6ANoCEdAp8+FliBoVXV9lChoBkdAixbXV9Wp62gHTegDaAhHQKfQ/NATqSp1fZQoaAZHQJA2uFEiMYNoB03oA2gIR0Cn1dIk7fYSdX2UKGgGR0CIpPSJj2BbaAdN6ANoCEdAp9ndxuKoAHV9lChoBkdAjULDqGDcumgHTegDaAhHQKffbxSYPXl1fZQoaAZHQIxz2hEjPfNoB03oA2gIR0Cn4HbuDzy0dX2UKGgGR0CORPC7btZ3aAdN6ANoCEdAp+O3/zasZHV9lChoBkdAidmYhUzbe2gHTegDaAhHQKfmaT238XN1fZQoaAZHQIfIEQCjk+5oB03oA2gIR0Cn69vT5O8DdX2UKGgGR0CK0cAZsKsuaAdN6ANoCEdAp+zbwOOKfnV9lChoBkdAiokJeNT99GgHTegDaAhHQKfxKmaYu011fZQoaAZHQItBeWhRIjJoB03oA2gIR0Cn9VI371qWdX2UKGgGR0CK4By3CsOoaAdN6ANoCEdAp/uRQrMC93V9lChoBkdAh6NRdhRZU2gHTegDaAhHQKf8lbh3qzJ1fZQoaAZHQI0p1aEBbOhoB03oA2gIR0Cn/7K2KEWZdX2UKGgGR0CLXIuQIUrTaAdN6ANoCEdAqAJUcbR4QnV9lChoBkdAjiTv/7zkIWgHTegDaAhHQKgHwWhRIjJ1fZQoaAZHQIrn58MNMGpoB03oA2gIR0CoCMSJbdJrdX2UKGgGR0CJE8ez2OABaAdN6ANoCEdAqAwMe6qbSnV9lChoBkdAiV8r2HtWuGgHTegDaAhHQKgP6q7ROUN1fZQoaAZHQIkp4ZbY9PloB03oA2gIR0CoF3imEXchdX2UKGgGR0CCaCfDk2gnaAdN6ANoCEdAqBiIgq3EynV9lChoBkdAiCAwRwqAjWgHTegDaAhHQKgbvCqIacZ1fZQoaAZHQIgRJ2KVII5oB03oA2gIR0CoHm09yLhrdX2UKGgGR0CKBmT9KmKqaAdN6ANoCEdAqCQLp3X7L3V9lChoBkdAilTsKCxu9GgHTegDaAhHQKglCb/ffoB1fZQoaAZHQIuTXPHDJltoB03oA2gIR0CoKDfWMCLddX2UKGgGR0CJClegL7XQaAdN6ANoCEdAqCth7mdRSHV9lChoBkdAjsaYZMtbtGgHTegDaAhHQKgzrQw9JSR1fZQoaAZHQIiJ0TWXkYJoB03oA2gIR0CoNK9n9NvgdX2UKGgGR0CQHRZBcAzYaAdN6ANoCEdAqDfR2pyZKHV9lChoBkdAhamESuhbn2gHTegDaAhHQKg6eT0xubZ1fZQoaAZHQI0he2PT5O9oB03oA2gIR0CoP/1fmcOLdX2UKGgGR0CLEBYNiH6/aAdN6ANoCEdAqEEDZnL7oHV9lChoBkdAihJ4eLehwmgHTegDaAhHQKhEM4//vOR1fZQoaAZHQIo+0+C9RJpoB03oA2gIR0CoRtlUQ04zdX2UKGgGR0CKeEmx+rlvaAdN6ANoCEdAqE7PYcvM83V9lChoBkdAjA2PM8ox6GgHTegDaAhHQKhQYtxuKoB1fZQoaAZHQIhHbz5GjKxoB03oA2gIR0CoVAnZ9NN8dX2UKGgGR0CKSwJKJ2t/aAdN6ANoCEdAqFa6zqrzXnV9lChoBkdAiWtyFXaJymgHTegDaAhHQKhcP16mfoR1fZQoaAZHQIf7jRQaaThoB03oA2gIR0CoXUWIfr8jdX2UKGgGR0CMc2DTz/ZNaAdN6ANoCEdAqGBrAk9lmXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 8, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (245 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 816.5488514257828, "std_reward": 32.986181745203744, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-26T21:54:48.495915"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad2612430fc793a2787454f96c97e9ff1ea4c2dd748b26dfb71d9aca2fc0dc4
3
+ size 2136