--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xml-roberta-large-finetuned-ner-biobert results: [] --- # xml-roberta-large-finetuned-ner-biobert This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0847 - Precision: 0.9493 - Recall: 0.9728 - F1: 0.9609 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5713 | 1.0 | 612 | 0.1009 | 0.9281 | 0.9603 | 0.9439 | 0.9729 | | 0.1048 | 2.0 | 1224 | 0.0903 | 0.9350 | 0.9730 | 0.9536 | 0.9779 | | 0.0743 | 3.0 | 1836 | 0.0783 | 0.9520 | 0.9745 | 0.9631 | 0.9823 | | 0.0568 | 4.0 | 2448 | 0.0855 | 0.9474 | 0.9712 | 0.9591 | 0.9802 | | 0.0361 | 5.0 | 3060 | 0.0847 | 0.9493 | 0.9728 | 0.9609 | 0.9815 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3