--- base_model: google/pegasus-large tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: SocialMainSectionsPegasusLargeModel results: [] --- # SocialMainSectionsPegasusLargeModel This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.6492 - Rouge1: 44.7384 - Rouge2: 14.7302 - Rougel: 30.3839 - Rougelsum: 40.5448 - Bertscore Precision: 77.1616 - Bertscore Recall: 81.7496 - Bertscore F1: 79.3809 - Bleu: 0.1156 - Gen Len: 190.8850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bertscore Precision | Bertscore Recall | Bertscore F1 | Bleu | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------------------:|:----------------:|:------------:|:------:|:--------:| | 5.8481 | 0.6661 | 500 | 5.6492 | 44.7384 | 14.7302 | 30.3839 | 40.5448 | 77.1616 | 81.7496 | 79.3809 | 0.1156 | 190.8850 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1