|
from abc import ABC, abstractmethod |
|
import torch |
|
import torch.nn as nn |
|
from .multimodal_encoder.builder import build_vision_tower |
|
from ChatUniVi.constants import * |
|
from .cluster import CTM, TCBlock |
|
from collections import OrderedDict |
|
|
|
|
|
class MetaModel: |
|
def __init__(self, config): |
|
super(MetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "mm_vision_tower"): |
|
self.vision_tower = build_vision_tower(config, delay_load=True) |
|
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
if hasattr(config, "config"): |
|
self.use_cluster = config.config["use_cluster"] |
|
if self.use_cluster: |
|
self.ctm0 = CTM(sample_ratio=config.config["spatial_cluster_rate0"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5) |
|
self.block0 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm1 = CTM(sample_ratio=config.config["spatial_cluster_rate1"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3) |
|
self.block1 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm2 = CTM(sample_ratio=config.config["spatial_cluster_rate2"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3) |
|
self.block2 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm3 = CTM(sample_ratio=config.config["temporal_cluster_rate"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5) |
|
self.block3 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
else: |
|
self.use_cluster = False |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, 'vision_tower', None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
def initialize_vision_modules(self, model_args, fsdp=None): |
|
vision_tower = model_args.vision_tower |
|
mm_vision_select_layer = model_args.mm_vision_select_layer |
|
mm_vision_select_feature = model_args.mm_vision_select_feature |
|
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter |
|
|
|
self.config.mm_vision_tower = vision_tower |
|
|
|
vision_tower = build_vision_tower(model_args) |
|
|
|
self.config.use_mm_proj = True |
|
self.config.mm_hidden_size = vision_tower.hidden_size |
|
self.config.mm_vision_select_layer = mm_vision_select_layer |
|
self.config.mm_vision_select_feature = mm_vision_select_feature |
|
|
|
if fsdp is not None and len(fsdp) > 0: |
|
self.vision_tower = [vision_tower] |
|
else: |
|
self.vision_tower = vision_tower |
|
|
|
if not hasattr(self, 'mm_projector') or not self.mm_projector.weight.size(0): |
|
self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size) |
|
|
|
if pretrain_mm_mlp_adapter is not None: |
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') |
|
def get_w(weights, keyword): |
|
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} |
|
|
|
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) |
|
|
|
def initialize_cluster_modules(self, model_args): |
|
self.use_cluster = model_args.use_cluster |
|
|
|
if self.use_cluster and not hasattr(self, 'ctm0'): |
|
self.ctm0 = CTM(sample_ratio=model_args.spatial_cluster_rate0, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5) |
|
self.block0 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm1 = CTM(sample_ratio=model_args.spatial_cluster_rate1, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3) |
|
self.block1 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm2 = CTM(sample_ratio=model_args.spatial_cluster_rate2, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3) |
|
self.block2 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
self.ctm3 = CTM(sample_ratio=model_args.temporal_cluster_rate, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5) |
|
self.block3 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8) |
|
|
|
|
|
class ChatUniViMetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images, select_feature="patch") |
|
return image_features |
|
|
|
def positional_encoding(self, x, num_features=1024, max_len=64): |
|
p = torch.zeros((1, max_len, num_features)) |
|
_x = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, |
|
torch.arange(0, num_features, 2, dtype=torch.float32) / num_features) |
|
|
|
p[:, :, 0::2] = torch.sin(_x) |
|
p[:, :, 1::2] = torch.cos(_x) |
|
x = x + p[:, :x.shape[1], :].to(x.device).to(x.dtype) |
|
return x |
|
|
|
def project(self, image_features, input_type="image"): |
|
if self.get_model().use_cluster: |
|
if input_type == "image": |
|
cluster_image_features = [] |
|
token_dict = {'x': image_features, |
|
'token_num': image_features.size(1), |
|
'idx_token': torch.arange(image_features.size(1))[None, :].repeat( |
|
image_features.size(0), 1), |
|
'agg_weight': image_features.new_ones(image_features.size(0), image_features.size(1), |
|
1), |
|
'mask': None} |
|
|
|
token_dict = self.get_model().block0(self.get_model().ctm0(token_dict)) |
|
cluster_image_features.append(token_dict["x"]) |
|
|
|
token_dict = self.get_model().block1(self.get_model().ctm1(token_dict)) |
|
cluster_image_features.append(token_dict["x"]) |
|
|
|
token_dict = self.get_model().block2(self.get_model().ctm2(token_dict)) |
|
cluster_image_features.append(token_dict["x"]) |
|
|
|
image_features = torch.cat(cluster_image_features, dim=1) |
|
image_features = image_features.to(self.get_model().mm_projector.weight.dtype) |
|
else: |
|
cls_features = torch.mean(image_features, dim=1, keepdim=False).unsqueeze(0).clone() |
|
token_dict = {'x': cls_features, |
|
'token_num': cls_features.size(1), |
|
'idx_token': torch.arange(cls_features.size(1))[None, :].repeat( |
|
cls_features.size(0), 1), |
|
'agg_weight': cls_features.new_ones(cls_features.size(0), cls_features.size(1), |
|
1), |
|
'mask': None} |
|
|
|
down_dict, token_dict = self.get_model().ctm3(token_dict) |
|
events = OrderedDict() |
|
|
|
max_len = 0 |
|
for id, i in enumerate(down_dict["idx_token"][0].tolist()): |
|
if i not in events: |
|
events[i] = [id] |
|
else: |
|
events[i].append(id) |
|
max_len = len(events[i]) if max_len < len(events[i]) else max_len |
|
|
|
cluster_image_features = [] |
|
token_dict = {'x': image_features, |
|
'token_num': image_features.size(1), |
|
'idx_token': torch.arange(image_features.size(1))[None, :].repeat( |
|
image_features.size(0), 1), |
|
'agg_weight': image_features.new_ones(image_features.size(0), image_features.size(1), |
|
1), |
|
'mask': None} |
|
|
|
token_dict0 = self.get_model().block0(self.get_model().ctm0(token_dict)) |
|
token_dict1 = self.get_model().block1(self.get_model().ctm1(token_dict0)) |
|
token_dict2 = self.get_model().block2(self.get_model().ctm2(token_dict1)) |
|
|
|
for id, key in enumerate(events): |
|
cur_image_features0 = torch.cat([token_dict0["x"][i] for i in events[key]], dim=0).unsqueeze(0) |
|
token_dict = {'x': cur_image_features0, |
|
'token_num': cur_image_features0.size(1), |
|
'idx_token': torch.arange(cur_image_features0.size(1))[None, :].repeat( |
|
cur_image_features0.size(0), 1), |
|
'agg_weight': cur_image_features0.new_ones(cur_image_features0.size(0), |
|
cur_image_features0.size(1), |
|
1), |
|
'mask': None} |
|
|
|
cur_token_dict0 = self.get_model().block0(self.get_model().ctm0(token_dict)) |
|
cluster_image_features.append(cur_token_dict0["x"]) |
|
|
|
cur_image_features1 = torch.cat([token_dict1["x"][i] for i in events[key]], dim=0).unsqueeze(0) |
|
token_dict = {'x': cur_image_features1, |
|
'token_num': cur_image_features1.size(1), |
|
'idx_token': torch.arange(cur_image_features1.size(1))[None, :].repeat( |
|
cur_image_features1.size(0), 1), |
|
'agg_weight': cur_image_features1.new_ones(cur_image_features1.size(0), |
|
cur_image_features1.size(1), |
|
1), |
|
'mask': None} |
|
|
|
cur_token_dict1 = self.get_model().block1(self.get_model().ctm1(token_dict)) |
|
cluster_image_features.append(cur_token_dict1["x"]) |
|
|
|
cur_image_features2 = torch.cat([token_dict2["x"][i] for i in events[key]], dim=0).unsqueeze(0) |
|
token_dict = {'x': cur_image_features2, |
|
'token_num': cur_image_features2.size(1), |
|
'idx_token': torch.arange(cur_image_features2.size(1))[None, :].repeat( |
|
cur_image_features2.size(0), 1), |
|
'agg_weight': cur_image_features2.new_ones(cur_image_features2.size(0), |
|
cur_image_features2.size(1), |
|
1), |
|
'mask': None} |
|
|
|
cur_token_dict2 = self.get_model().block2(self.get_model().ctm2(token_dict)) |
|
cluster_image_features.append(cur_token_dict2["x"]) |
|
|
|
image_features = torch.cat(cluster_image_features, dim=1) |
|
image_features = image_features.to(self.get_model().mm_projector.weight.dtype) |
|
|
|
else: |
|
if input_type == "video": |
|
image_features, cls_features = torch.mean(image_features, dim=0, keepdim=False).unsqueeze( |
|
0), torch.mean(image_features, dim=1, keepdim=False).unsqueeze(0) |
|
image_features = torch.cat([image_features, cls_features], dim=1) |
|
|
|
image_features = self.get_model().mm_projector(image_features) |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.get_vision_tower() |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = cur_input_embeds + ( |
|
0. * self.get_model().mm_projector(vision_tower.dummy_feature)).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
|
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
|
|
if len(image_token_indices) > 1: |
|
temp = [] |
|
cur, pre = image_token_indices[0], image_token_indices[0] |
|
for i in image_token_indices: |
|
cur = i |
|
if cur - pre == 1: |
|
temp[-1] = temp[-1] + [cur] |
|
else: |
|
temp.append([cur]) |
|
pre = cur |
|
|
|
for i in temp: |
|
image_token_start = image_token_indices[0] |
|
image_token_end = image_token_indices[-1] |
|
cur_image_features = [] |
|
|
|
for _ in i: |
|
cur_image_features.append(image_features[cur_image_idx]) |
|
cur_image_idx += 1 |
|
|
|
if len(i) > 2: |
|
cur_image_features = torch.stack(cur_image_features, dim=0) |
|
cur_image_features = self.project(cur_image_features, input_type="video") |
|
t, l, n = cur_image_features.size() |
|
cur_image_features = cur_image_features.contiguous().view(t * l, n) |
|
else: |
|
cur_image_features = torch.stack(cur_image_features, dim=0) |
|
cur_image_features = self.project(cur_image_features, input_type="image") |
|
t, l, n = cur_image_features.size() |
|
cur_image_features = cur_image_features.contiguous().view(t * l, n) |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start - 1]).detach()) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start - 1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_end + 1:image_token_end + 2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_end:image_token_end + 1]) |
|
cur_labels = cur_labels[image_token_end + 2:] |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_end + 1:] |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_input_ids = cur_input_ids[image_token_end + 2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_end + 1:] |
|
|
|
elif image_token_indices.numel() > 0: |
|
cur_image_features = [] |
|
image_token_start = image_token_indices[0] |
|
image_token_end = image_token_indices[-1] |
|
|
|
for _ in image_token_indices: |
|
cur_image_features.append(image_features[cur_image_idx]) |
|
cur_image_idx += 1 |
|
|
|
cur_image_features = torch.stack(cur_image_features, dim=0) |
|
cur_image_features = self.project(cur_image_features, input_type="image") |
|
t, l, n = cur_image_features.size() |
|
cur_image_features = cur_image_features.contiguous().view(t * l, n) |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_end+1:image_token_end+2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_end:image_token_end+1]) |
|
cur_labels = cur_labels[image_token_end+2:] |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_end+1:] |
|
|
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_input_ids = cur_input_ids[image_token_end+2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_end+1:] |
|
|
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) |
|
else: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
def initialize_vision_tokenizer(self, model_args, tokenizer): |
|
if model_args.mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
tokenizer.add_tokens([DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if model_args.mm_use_im_start_end: |
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VID_START_TOKEN, DEFAULT_VID_END_TOKEN], special_tokens=True) |
|
self.resize_token_embeddings(len(tokenizer)) |
|
|
|
if num_new_tokens > 0: |
|
input_embeddings = self.get_input_embeddings().weight.data |
|
output_embeddings = self.get_output_embeddings().weight.data |
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( |
|
dim=0, keepdim=True) |
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg |
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg |
|
|
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = True |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |
|
|
|
if model_args.pretrain_mm_mlp_adapter: |
|
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') |
|
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] |
|
assert num_new_tokens == 2 |
|
if input_embeddings.shape == embed_tokens_weight.shape: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] |
|
elif embed_tokens_weight.shape[0] == num_new_tokens: |
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight |
|
else: |
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") |
|
elif model_args.mm_use_im_patch_token: |
|
if model_args.tune_mm_mlp_adapter: |
|
for p in self.get_input_embeddings().parameters(): |
|
p.requires_grad = False |
|
for p in self.get_output_embeddings().parameters(): |
|
p.requires_grad = False |