ManishThota's picture
Upload folder using huggingface_hub
1fea0a0 verified
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from .multimodal_encoder.builder import build_vision_tower
from ChatUniVi.constants import *
from .cluster import CTM, TCBlock
from collections import OrderedDict
class MetaModel:
def __init__(self, config):
super(MetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
if hasattr(config, "config"):
self.use_cluster = config.config["use_cluster"]
if self.use_cluster:
self.ctm0 = CTM(sample_ratio=config.config["spatial_cluster_rate0"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5)
self.block0 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm1 = CTM(sample_ratio=config.config["spatial_cluster_rate1"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3)
self.block1 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm2 = CTM(sample_ratio=config.config["spatial_cluster_rate2"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3)
self.block2 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm3 = CTM(sample_ratio=config.config["temporal_cluster_rate"], embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5)
self.block3 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
else:
self.use_cluster = False
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
vision_tower = build_vision_tower(model_args)
self.config.use_mm_proj = True
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
if not hasattr(self, 'mm_projector') or not self.mm_projector.weight.size(0):
self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
def initialize_cluster_modules(self, model_args):
self.use_cluster = model_args.use_cluster
if self.use_cluster and not hasattr(self, 'ctm0'):
self.ctm0 = CTM(sample_ratio=model_args.spatial_cluster_rate0, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5)
self.block0 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm1 = CTM(sample_ratio=model_args.spatial_cluster_rate1, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3)
self.block1 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm2 = CTM(sample_ratio=model_args.spatial_cluster_rate2, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=3)
self.block2 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
self.ctm3 = CTM(sample_ratio=model_args.temporal_cluster_rate, embed_dim=self.config.mm_hidden_size, dim_out=self.config.mm_hidden_size, k=5)
self.block3 = TCBlock(dim=self.config.mm_hidden_size, num_heads=8)
class ChatUniViMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images, select_feature="patch")
return image_features
def positional_encoding(self, x, num_features=1024, max_len=64):
p = torch.zeros((1, max_len, num_features))
_x = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000,
torch.arange(0, num_features, 2, dtype=torch.float32) / num_features)
p[:, :, 0::2] = torch.sin(_x)
p[:, :, 1::2] = torch.cos(_x)
x = x + p[:, :x.shape[1], :].to(x.device).to(x.dtype)
return x
def project(self, image_features, input_type="image"):
if self.get_model().use_cluster:
if input_type == "image":
cluster_image_features = []
token_dict = {'x': image_features,
'token_num': image_features.size(1),
'idx_token': torch.arange(image_features.size(1))[None, :].repeat(
image_features.size(0), 1),
'agg_weight': image_features.new_ones(image_features.size(0), image_features.size(1),
1),
'mask': None}
token_dict = self.get_model().block0(self.get_model().ctm0(token_dict))
cluster_image_features.append(token_dict["x"])
token_dict = self.get_model().block1(self.get_model().ctm1(token_dict))
cluster_image_features.append(token_dict["x"])
token_dict = self.get_model().block2(self.get_model().ctm2(token_dict))
cluster_image_features.append(token_dict["x"])
image_features = torch.cat(cluster_image_features, dim=1)
image_features = image_features.to(self.get_model().mm_projector.weight.dtype)
else:
cls_features = torch.mean(image_features, dim=1, keepdim=False).unsqueeze(0).clone()
token_dict = {'x': cls_features,
'token_num': cls_features.size(1),
'idx_token': torch.arange(cls_features.size(1))[None, :].repeat(
cls_features.size(0), 1),
'agg_weight': cls_features.new_ones(cls_features.size(0), cls_features.size(1),
1),
'mask': None}
down_dict, token_dict = self.get_model().ctm3(token_dict)
events = OrderedDict()
max_len = 0
for id, i in enumerate(down_dict["idx_token"][0].tolist()):
if i not in events:
events[i] = [id]
else:
events[i].append(id)
max_len = len(events[i]) if max_len < len(events[i]) else max_len
cluster_image_features = []
token_dict = {'x': image_features,
'token_num': image_features.size(1),
'idx_token': torch.arange(image_features.size(1))[None, :].repeat(
image_features.size(0), 1),
'agg_weight': image_features.new_ones(image_features.size(0), image_features.size(1),
1),
'mask': None}
token_dict0 = self.get_model().block0(self.get_model().ctm0(token_dict))
token_dict1 = self.get_model().block1(self.get_model().ctm1(token_dict0))
token_dict2 = self.get_model().block2(self.get_model().ctm2(token_dict1))
for id, key in enumerate(events):
cur_image_features0 = torch.cat([token_dict0["x"][i] for i in events[key]], dim=0).unsqueeze(0)
token_dict = {'x': cur_image_features0,
'token_num': cur_image_features0.size(1),
'idx_token': torch.arange(cur_image_features0.size(1))[None, :].repeat(
cur_image_features0.size(0), 1),
'agg_weight': cur_image_features0.new_ones(cur_image_features0.size(0),
cur_image_features0.size(1),
1),
'mask': None}
cur_token_dict0 = self.get_model().block0(self.get_model().ctm0(token_dict))
cluster_image_features.append(cur_token_dict0["x"])
cur_image_features1 = torch.cat([token_dict1["x"][i] for i in events[key]], dim=0).unsqueeze(0)
token_dict = {'x': cur_image_features1,
'token_num': cur_image_features1.size(1),
'idx_token': torch.arange(cur_image_features1.size(1))[None, :].repeat(
cur_image_features1.size(0), 1),
'agg_weight': cur_image_features1.new_ones(cur_image_features1.size(0),
cur_image_features1.size(1),
1),
'mask': None}
cur_token_dict1 = self.get_model().block1(self.get_model().ctm1(token_dict))
cluster_image_features.append(cur_token_dict1["x"])
cur_image_features2 = torch.cat([token_dict2["x"][i] for i in events[key]], dim=0).unsqueeze(0)
token_dict = {'x': cur_image_features2,
'token_num': cur_image_features2.size(1),
'idx_token': torch.arange(cur_image_features2.size(1))[None, :].repeat(
cur_image_features2.size(0), 1),
'agg_weight': cur_image_features2.new_ones(cur_image_features2.size(0),
cur_image_features2.size(1),
1),
'mask': None}
cur_token_dict2 = self.get_model().block2(self.get_model().ctm2(token_dict))
cluster_image_features.append(cur_token_dict2["x"])
image_features = torch.cat(cluster_image_features, dim=1)
image_features = image_features.to(self.get_model().mm_projector.weight.dtype)
else:
if input_type == "video":
image_features, cls_features = torch.mean(image_features, dim=0, keepdim=False).unsqueeze(
0), torch.mean(image_features, dim=1, keepdim=False).unsqueeze(0)
image_features = torch.cat([image_features, cls_features], dim=1)
image_features = self.get_model().mm_projector(image_features)
return image_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
return input_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1) for x in image_features]
else:
image_features = self.encode_images(images)
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = cur_input_embeds + (
0. * self.get_model().mm_projector(vision_tower.dummy_feature)).sum()
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
if len(image_token_indices) > 1:
temp = []
cur, pre = image_token_indices[0], image_token_indices[0]
for i in image_token_indices:
cur = i
if cur - pre == 1:
temp[-1] = temp[-1] + [cur]
else:
temp.append([cur])
pre = cur
for i in temp:
image_token_start = image_token_indices[0]
image_token_end = image_token_indices[-1]
cur_image_features = []
for _ in i:
cur_image_features.append(image_features[cur_image_idx])
cur_image_idx += 1
if len(i) > 2:
cur_image_features = torch.stack(cur_image_features, dim=0)
cur_image_features = self.project(cur_image_features, input_type="video")
t, l, n = cur_image_features.size()
cur_image_features = cur_image_features.contiguous().view(t * l, n)
else:
cur_image_features = torch.stack(cur_image_features, dim=0)
cur_image_features = self.project(cur_image_features, input_type="image")
t, l, n = cur_image_features.size()
cur_image_features = cur_image_features.contiguous().view(t * l, n)
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start - 1]).detach())
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start - 1:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_end + 1:image_token_end + 2]))
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_new_labels.append(cur_labels[image_token_end:image_token_end + 1])
cur_labels = cur_labels[image_token_end + 2:]
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[image_token_end + 1:]
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end',
False):
cur_input_ids = cur_input_ids[image_token_end + 2:]
else:
cur_input_ids = cur_input_ids[image_token_end + 1:]
elif image_token_indices.numel() > 0:
cur_image_features = []
image_token_start = image_token_indices[0]
image_token_end = image_token_indices[-1]
for _ in image_token_indices:
cur_image_features.append(image_features[cur_image_idx])
cur_image_idx += 1
cur_image_features = torch.stack(cur_image_features, dim=0)
cur_image_features = self.project(cur_image_features, input_type="image")
t, l, n = cur_image_features.size()
cur_image_features = cur_image_features.contiguous().view(t * l, n)
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_end+1:image_token_end+2]))
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_new_labels.append(cur_labels[image_token_end:image_token_end+1])
cur_labels = cur_labels[image_token_end+2:]
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
cur_new_input_embeds.append(cur_image_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
cur_labels = cur_labels[image_token_end+1:]
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_input_ids = cur_input_ids[image_token_end+2:]
else:
cur_input_ids = cur_input_ids[image_token_end+1:]
if cur_input_ids.numel() > 0:
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
return None, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
tokenizer.add_tokens([DEFAULT_VIDEO_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VID_START_TOKEN, DEFAULT_VID_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False