File size: 7,431 Bytes
1fea0a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from .constants import *
from .conversation import conv_templates, SeparatorStyle
from .model.builder import load_pretrained_model
from .utils import disable_torch_init
from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria
from PIL import Image
import os
from decord import VideoReader, cpu
import numpy as np


class Chat:
    def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False):
        disable_torch_init()
        self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name="ChatUniVi", load_8bit=load_8bit, load_4bit=load_4bit)
        self.model.to("cuda:0")
        mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False)
        mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True)
        if mm_use_im_patch_token:
            self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
        if mm_use_im_start_end:
            self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
        self.model.resize_token_embeddings(len(self.tokenizer))

        vision_tower = self.model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()

        self.image_processor = vision_tower.image_processor
        self.conv_mode = conv_mode
        print(self.model)

    def get_prompt(self, qs, state):
        state.append_message(state.roles[0], qs)
        state.append_message(state.roles[1], None)
        return state

    def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224,
                          video_framerate=1, s=None, e=None):
        if s is None:
            start_time, end_time = None, None
        else:
            start_time = int(s)
            end_time = int(e)
            start_time = start_time if start_time >= 0. else 0.
            end_time = end_time if end_time >= 0. else 0.
            if start_time > end_time:
                start_time, end_time = end_time, start_time
            elif start_time == end_time:
                end_time = start_time + 1

        if os.path.exists(video_path):
            vreader = VideoReader(video_path, ctx=cpu(0))
        else:
            print(video_path)
            raise FileNotFoundError

        fps = vreader.get_avg_fps()
        f_start = 0 if start_time is None else int(start_time * fps)
        f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
        num_frames = f_end - f_start + 1
        if num_frames > 0:
            sample_fps = int(video_framerate)
            t_stride = int(round(float(fps) / sample_fps))

            all_pos = list(range(f_start, f_end + 1, t_stride))
            if len(all_pos) > max_frames:
                sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
            else:
                sample_pos = all_pos

            patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
            return patch_images

    @torch.inference_mode()
    @spaces.GPU
    def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor

        state = self.get_prompt(prompt, state)
        prompt = state.get_prompt()
        print(prompt)

        images_tensor = torch.stack(images_tensor, dim=0)
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to("cuda:0")

        temperature = 0.2
        max_new_tokens = 1024

        stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
        conv_templates[self.conv_mode].copy().sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=images_tensor,
                do_sample=True,
                temperature=temperature,
                num_beams=1,
                max_new_tokens=max_new_tokens,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        print('response', outputs)
        return outputs, state



title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/PKU-YuanGroup/Chat-UniVi" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="https://z1.ax1x.com/2023/11/22/pidlXh4.jpg" alt="Chat-UniVi🚀" style="max-width: 120px; height: auto;">
  </a>
  <div>
    <h1 >Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding</h1>
    <h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
  </div>
</div>
<div align="center">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href='https://github.com/PKU-YuanGroup/Chat-UniVi'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
        <a href="https://arxiv.org/pdf/2311.08046.pdf"><img src="https://img.shields.io/badge/Arxiv-2311.08046-red"></a>
        <a href='https://github.com/PKU-YuanGroup/Chat-UniVi/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/Chat-UniVi.svg?style=social'></a>
    </div>
</div>
""")

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""


tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")