Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +911 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
| 3 |
+
datasets: []
|
| 4 |
+
language: []
|
| 5 |
+
library_name: sentence-transformers
|
| 6 |
+
metrics:
|
| 7 |
+
- pearson_cosine
|
| 8 |
+
- spearman_cosine
|
| 9 |
+
- pearson_manhattan
|
| 10 |
+
- spearman_manhattan
|
| 11 |
+
- pearson_euclidean
|
| 12 |
+
- spearman_euclidean
|
| 13 |
+
- pearson_dot
|
| 14 |
+
- spearman_dot
|
| 15 |
+
- pearson_max
|
| 16 |
+
- spearman_max
|
| 17 |
+
pipeline_tag: sentence-similarity
|
| 18 |
+
tags:
|
| 19 |
+
- sentence-transformers
|
| 20 |
+
- sentence-similarity
|
| 21 |
+
- feature-extraction
|
| 22 |
+
- generated_from_trainer
|
| 23 |
+
- dataset_size:724
|
| 24 |
+
- loss:CoSENTLoss
|
| 25 |
+
widget:
|
| 26 |
+
- source_sentence: Financials
|
| 27 |
+
sentences:
|
| 28 |
+
- What is the financial performance of ABC?
|
| 29 |
+
- What companies operate in the same space as ABC?
|
| 30 |
+
- What standards are used to evaluate the industry?
|
| 31 |
+
- source_sentence: Research
|
| 32 |
+
sentences:
|
| 33 |
+
- What recent studies have been conducted on ABC?
|
| 34 |
+
- What are the key factors considered in rating ABC?
|
| 35 |
+
- How is the rating framework applied to the sector?
|
| 36 |
+
- source_sentence: Criteria
|
| 37 |
+
sentences:
|
| 38 |
+
- What are the projected economic impacts of inflation on the technology industry?
|
| 39 |
+
- What is the process for assessing the creditworthiness of ABC?
|
| 40 |
+
- What are the primary ESG challenges faced by ABC?
|
| 41 |
+
- source_sentence: Financials
|
| 42 |
+
sentences:
|
| 43 |
+
- Can you list the strengths and weaknesses of ABC?
|
| 44 |
+
- What is understood by the term sovereign risk?
|
| 45 |
+
- Can you provide the financial history of ABC?
|
| 46 |
+
- source_sentence: Research
|
| 47 |
+
sentences:
|
| 48 |
+
- What macroeconomic trends are influencing the credit ratings of the automotive
|
| 49 |
+
industry?
|
| 50 |
+
- Who are the main rivals of ABC?
|
| 51 |
+
- Can you provide the latest research insights on ABC?
|
| 52 |
+
model-index:
|
| 53 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
| 54 |
+
results:
|
| 55 |
+
- task:
|
| 56 |
+
type: semantic-similarity
|
| 57 |
+
name: Semantic Similarity
|
| 58 |
+
dataset:
|
| 59 |
+
name: sts dev
|
| 60 |
+
type: sts-dev
|
| 61 |
+
metrics:
|
| 62 |
+
- type: pearson_cosine
|
| 63 |
+
value: .nan
|
| 64 |
+
name: Pearson Cosine
|
| 65 |
+
- type: spearman_cosine
|
| 66 |
+
value: .nan
|
| 67 |
+
name: Spearman Cosine
|
| 68 |
+
- type: pearson_manhattan
|
| 69 |
+
value: .nan
|
| 70 |
+
name: Pearson Manhattan
|
| 71 |
+
- type: spearman_manhattan
|
| 72 |
+
value: .nan
|
| 73 |
+
name: Spearman Manhattan
|
| 74 |
+
- type: pearson_euclidean
|
| 75 |
+
value: .nan
|
| 76 |
+
name: Pearson Euclidean
|
| 77 |
+
- type: spearman_euclidean
|
| 78 |
+
value: .nan
|
| 79 |
+
name: Spearman Euclidean
|
| 80 |
+
- type: pearson_dot
|
| 81 |
+
value: .nan
|
| 82 |
+
name: Pearson Dot
|
| 83 |
+
- type: spearman_dot
|
| 84 |
+
value: .nan
|
| 85 |
+
name: Spearman Dot
|
| 86 |
+
- type: pearson_max
|
| 87 |
+
value: .nan
|
| 88 |
+
name: Pearson Max
|
| 89 |
+
- type: spearman_max
|
| 90 |
+
value: .nan
|
| 91 |
+
name: Spearman Max
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
| 95 |
+
|
| 96 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 97 |
+
|
| 98 |
+
## Model Details
|
| 99 |
+
|
| 100 |
+
### Model Description
|
| 101 |
+
- **Model Type:** Sentence Transformer
|
| 102 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
| 103 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 104 |
+
- **Output Dimensionality:** 384 tokens
|
| 105 |
+
- **Similarity Function:** Cosine Similarity
|
| 106 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 107 |
+
<!-- - **Language:** Unknown -->
|
| 108 |
+
<!-- - **License:** Unknown -->
|
| 109 |
+
|
| 110 |
+
### Model Sources
|
| 111 |
+
|
| 112 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 113 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 114 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 115 |
+
|
| 116 |
+
### Full Model Architecture
|
| 117 |
+
|
| 118 |
+
```
|
| 119 |
+
SentenceTransformer(
|
| 120 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
| 121 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 122 |
+
)
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## Usage
|
| 126 |
+
|
| 127 |
+
### Direct Usage (Sentence Transformers)
|
| 128 |
+
|
| 129 |
+
First install the Sentence Transformers library:
|
| 130 |
+
|
| 131 |
+
```bash
|
| 132 |
+
pip install -U sentence-transformers
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
Then you can load this model and run inference.
|
| 136 |
+
```python
|
| 137 |
+
from sentence_transformers import SentenceTransformer
|
| 138 |
+
|
| 139 |
+
# Download from the 🤗 Hub
|
| 140 |
+
model = SentenceTransformer("ManishThota/QueryRouter")
|
| 141 |
+
# Run inference
|
| 142 |
+
sentences = [
|
| 143 |
+
'Research',
|
| 144 |
+
'Can you provide the latest research insights on ABC?',
|
| 145 |
+
'Who are the main rivals of ABC?',
|
| 146 |
+
]
|
| 147 |
+
embeddings = model.encode(sentences)
|
| 148 |
+
print(embeddings.shape)
|
| 149 |
+
# [3, 384]
|
| 150 |
+
|
| 151 |
+
# Get the similarity scores for the embeddings
|
| 152 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 153 |
+
print(similarities.shape)
|
| 154 |
+
# [3, 3]
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
<!--
|
| 158 |
+
### Direct Usage (Transformers)
|
| 159 |
+
|
| 160 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 161 |
+
|
| 162 |
+
</details>
|
| 163 |
+
-->
|
| 164 |
+
|
| 165 |
+
<!--
|
| 166 |
+
### Downstream Usage (Sentence Transformers)
|
| 167 |
+
|
| 168 |
+
You can finetune this model on your own dataset.
|
| 169 |
+
|
| 170 |
+
<details><summary>Click to expand</summary>
|
| 171 |
+
|
| 172 |
+
</details>
|
| 173 |
+
-->
|
| 174 |
+
|
| 175 |
+
<!--
|
| 176 |
+
### Out-of-Scope Use
|
| 177 |
+
|
| 178 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 179 |
+
-->
|
| 180 |
+
|
| 181 |
+
## Evaluation
|
| 182 |
+
|
| 183 |
+
### Metrics
|
| 184 |
+
|
| 185 |
+
#### Semantic Similarity
|
| 186 |
+
* Dataset: `sts-dev`
|
| 187 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 188 |
+
|
| 189 |
+
| Metric | Value |
|
| 190 |
+
|:--------------------|:--------|
|
| 191 |
+
| pearson_cosine | nan |
|
| 192 |
+
| **spearman_cosine** | **nan** |
|
| 193 |
+
| pearson_manhattan | nan |
|
| 194 |
+
| spearman_manhattan | nan |
|
| 195 |
+
| pearson_euclidean | nan |
|
| 196 |
+
| spearman_euclidean | nan |
|
| 197 |
+
| pearson_dot | nan |
|
| 198 |
+
| spearman_dot | nan |
|
| 199 |
+
| pearson_max | nan |
|
| 200 |
+
| spearman_max | nan |
|
| 201 |
+
|
| 202 |
+
<!--
|
| 203 |
+
## Bias, Risks and Limitations
|
| 204 |
+
|
| 205 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 206 |
+
-->
|
| 207 |
+
|
| 208 |
+
<!--
|
| 209 |
+
### Recommendations
|
| 210 |
+
|
| 211 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 212 |
+
-->
|
| 213 |
+
|
| 214 |
+
## Training Details
|
| 215 |
+
|
| 216 |
+
### Training Dataset
|
| 217 |
+
|
| 218 |
+
#### Unnamed Dataset
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
* Size: 724 training samples
|
| 222 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 223 |
+
* Approximate statistics based on the first 1000 samples:
|
| 224 |
+
| | sentence1 | sentence2 | score |
|
| 225 |
+
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 226 |
+
| type | string | string | float |
|
| 227 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 3.27 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 14.23 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
| 228 |
+
* Samples:
|
| 229 |
+
| sentence1 | sentence2 | score |
|
| 230 |
+
|:--------------------|:-------------------------------------------------|:-----------------|
|
| 231 |
+
| <code>Rating</code> | <code>What rating does XYZ have?</code> | <code>1.0</code> |
|
| 232 |
+
| <code>Rating</code> | <code>Can you provide the rating for XYZ?</code> | <code>1.0</code> |
|
| 233 |
+
| <code>Rating</code> | <code>How is XYZ rated?</code> | <code>1.0</code> |
|
| 234 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
| 235 |
+
```json
|
| 236 |
+
{
|
| 237 |
+
"scale": 20.0,
|
| 238 |
+
"similarity_fct": "pairwise_cos_sim"
|
| 239 |
+
}
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
### Evaluation Dataset
|
| 243 |
+
|
| 244 |
+
#### Unnamed Dataset
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
* Size: 60 evaluation samples
|
| 248 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 249 |
+
* Approximate statistics based on the first 1000 samples:
|
| 250 |
+
| | sentence1 | sentence2 | score |
|
| 251 |
+
|:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 252 |
+
| type | string | string | float |
|
| 253 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 3.25 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 12.48 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
| 254 |
+
* Samples:
|
| 255 |
+
| sentence1 | sentence2 | score |
|
| 256 |
+
|:--------------------|:-------------------------------------------------|:-----------------|
|
| 257 |
+
| <code>Rating</code> | <code>What is the current rating of ABC?</code> | <code>1.0</code> |
|
| 258 |
+
| <code>Rating</code> | <code>Can you tell me the rating for ABC?</code> | <code>1.0</code> |
|
| 259 |
+
| <code>Rating</code> | <code>What rating has ABC been assigned?</code> | <code>1.0</code> |
|
| 260 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
| 261 |
+
```json
|
| 262 |
+
{
|
| 263 |
+
"scale": 20.0,
|
| 264 |
+
"similarity_fct": "pairwise_cos_sim"
|
| 265 |
+
}
|
| 266 |
+
```
|
| 267 |
+
|
| 268 |
+
### Training Hyperparameters
|
| 269 |
+
#### Non-Default Hyperparameters
|
| 270 |
+
|
| 271 |
+
- `eval_strategy`: steps
|
| 272 |
+
- `learning_rate`: 2e-05
|
| 273 |
+
- `num_train_epochs`: 10
|
| 274 |
+
- `warmup_ratio`: 0.1
|
| 275 |
+
- `save_only_model`: True
|
| 276 |
+
- `seed`: 33
|
| 277 |
+
- `fp16`: True
|
| 278 |
+
- `load_best_model_at_end`: True
|
| 279 |
+
|
| 280 |
+
#### All Hyperparameters
|
| 281 |
+
<details><summary>Click to expand</summary>
|
| 282 |
+
|
| 283 |
+
- `overwrite_output_dir`: False
|
| 284 |
+
- `do_predict`: False
|
| 285 |
+
- `eval_strategy`: steps
|
| 286 |
+
- `prediction_loss_only`: True
|
| 287 |
+
- `per_device_train_batch_size`: 8
|
| 288 |
+
- `per_device_eval_batch_size`: 8
|
| 289 |
+
- `per_gpu_train_batch_size`: None
|
| 290 |
+
- `per_gpu_eval_batch_size`: None
|
| 291 |
+
- `gradient_accumulation_steps`: 1
|
| 292 |
+
- `eval_accumulation_steps`: None
|
| 293 |
+
- `learning_rate`: 2e-05
|
| 294 |
+
- `weight_decay`: 0.0
|
| 295 |
+
- `adam_beta1`: 0.9
|
| 296 |
+
- `adam_beta2`: 0.999
|
| 297 |
+
- `adam_epsilon`: 1e-08
|
| 298 |
+
- `max_grad_norm`: 1.0
|
| 299 |
+
- `num_train_epochs`: 10
|
| 300 |
+
- `max_steps`: -1
|
| 301 |
+
- `lr_scheduler_type`: linear
|
| 302 |
+
- `lr_scheduler_kwargs`: {}
|
| 303 |
+
- `warmup_ratio`: 0.1
|
| 304 |
+
- `warmup_steps`: 0
|
| 305 |
+
- `log_level`: passive
|
| 306 |
+
- `log_level_replica`: warning
|
| 307 |
+
- `log_on_each_node`: True
|
| 308 |
+
- `logging_nan_inf_filter`: True
|
| 309 |
+
- `save_safetensors`: True
|
| 310 |
+
- `save_on_each_node`: False
|
| 311 |
+
- `save_only_model`: True
|
| 312 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 313 |
+
- `no_cuda`: False
|
| 314 |
+
- `use_cpu`: False
|
| 315 |
+
- `use_mps_device`: False
|
| 316 |
+
- `seed`: 33
|
| 317 |
+
- `data_seed`: None
|
| 318 |
+
- `jit_mode_eval`: False
|
| 319 |
+
- `use_ipex`: False
|
| 320 |
+
- `bf16`: False
|
| 321 |
+
- `fp16`: True
|
| 322 |
+
- `fp16_opt_level`: O1
|
| 323 |
+
- `half_precision_backend`: auto
|
| 324 |
+
- `bf16_full_eval`: False
|
| 325 |
+
- `fp16_full_eval`: False
|
| 326 |
+
- `tf32`: None
|
| 327 |
+
- `local_rank`: 0
|
| 328 |
+
- `ddp_backend`: None
|
| 329 |
+
- `tpu_num_cores`: None
|
| 330 |
+
- `tpu_metrics_debug`: False
|
| 331 |
+
- `debug`: []
|
| 332 |
+
- `dataloader_drop_last`: False
|
| 333 |
+
- `dataloader_num_workers`: 0
|
| 334 |
+
- `dataloader_prefetch_factor`: None
|
| 335 |
+
- `past_index`: -1
|
| 336 |
+
- `disable_tqdm`: False
|
| 337 |
+
- `remove_unused_columns`: True
|
| 338 |
+
- `label_names`: None
|
| 339 |
+
- `load_best_model_at_end`: True
|
| 340 |
+
- `ignore_data_skip`: False
|
| 341 |
+
- `fsdp`: []
|
| 342 |
+
- `fsdp_min_num_params`: 0
|
| 343 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 344 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 345 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 346 |
+
- `deepspeed`: None
|
| 347 |
+
- `label_smoothing_factor`: 0.0
|
| 348 |
+
- `optim`: adamw_torch
|
| 349 |
+
- `optim_args`: None
|
| 350 |
+
- `adafactor`: False
|
| 351 |
+
- `group_by_length`: False
|
| 352 |
+
- `length_column_name`: length
|
| 353 |
+
- `ddp_find_unused_parameters`: None
|
| 354 |
+
- `ddp_bucket_cap_mb`: None
|
| 355 |
+
- `ddp_broadcast_buffers`: False
|
| 356 |
+
- `dataloader_pin_memory`: True
|
| 357 |
+
- `dataloader_persistent_workers`: False
|
| 358 |
+
- `skip_memory_metrics`: True
|
| 359 |
+
- `use_legacy_prediction_loop`: False
|
| 360 |
+
- `push_to_hub`: False
|
| 361 |
+
- `resume_from_checkpoint`: None
|
| 362 |
+
- `hub_model_id`: None
|
| 363 |
+
- `hub_strategy`: every_save
|
| 364 |
+
- `hub_private_repo`: False
|
| 365 |
+
- `hub_always_push`: False
|
| 366 |
+
- `gradient_checkpointing`: False
|
| 367 |
+
- `gradient_checkpointing_kwargs`: None
|
| 368 |
+
- `include_inputs_for_metrics`: False
|
| 369 |
+
- `eval_do_concat_batches`: True
|
| 370 |
+
- `fp16_backend`: auto
|
| 371 |
+
- `push_to_hub_model_id`: None
|
| 372 |
+
- `push_to_hub_organization`: None
|
| 373 |
+
- `mp_parameters`:
|
| 374 |
+
- `auto_find_batch_size`: False
|
| 375 |
+
- `full_determinism`: False
|
| 376 |
+
- `torchdynamo`: None
|
| 377 |
+
- `ray_scope`: last
|
| 378 |
+
- `ddp_timeout`: 1800
|
| 379 |
+
- `torch_compile`: False
|
| 380 |
+
- `torch_compile_backend`: None
|
| 381 |
+
- `torch_compile_mode`: None
|
| 382 |
+
- `dispatch_batches`: None
|
| 383 |
+
- `split_batches`: None
|
| 384 |
+
- `include_tokens_per_second`: False
|
| 385 |
+
- `include_num_input_tokens_seen`: False
|
| 386 |
+
- `neftune_noise_alpha`: None
|
| 387 |
+
- `optim_target_modules`: None
|
| 388 |
+
- `batch_eval_metrics`: False
|
| 389 |
+
- `batch_sampler`: batch_sampler
|
| 390 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 391 |
+
|
| 392 |
+
</details>
|
| 393 |
+
|
| 394 |
+
### Training Logs
|
| 395 |
+
<details><summary>Click to expand</summary>
|
| 396 |
+
|
| 397 |
+
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine |
|
| 398 |
+
|:----------:|:-------:|:-------------:|:-------:|:-----------------------:|
|
| 399 |
+
| 0.0220 | 2 | - | 0.0 | nan |
|
| 400 |
+
| 0.0440 | 4 | - | 0.0 | nan |
|
| 401 |
+
| 0.0659 | 6 | - | 0.0 | nan |
|
| 402 |
+
| 0.0879 | 8 | - | 0.0 | nan |
|
| 403 |
+
| 0.1099 | 10 | - | 0.0 | nan |
|
| 404 |
+
| 0.1319 | 12 | - | 0.0 | nan |
|
| 405 |
+
| 0.1538 | 14 | - | 0.0 | nan |
|
| 406 |
+
| 0.1758 | 16 | - | 0.0 | nan |
|
| 407 |
+
| 0.1978 | 18 | - | 0.0 | nan |
|
| 408 |
+
| 0.2198 | 20 | - | 0.0 | nan |
|
| 409 |
+
| 0.2418 | 22 | - | 0.0 | nan |
|
| 410 |
+
| 0.2637 | 24 | - | 0.0 | nan |
|
| 411 |
+
| 0.2857 | 26 | - | 0.0 | nan |
|
| 412 |
+
| 0.3077 | 28 | - | 0.0 | nan |
|
| 413 |
+
| 0.3297 | 30 | - | 0.0 | nan |
|
| 414 |
+
| 0.3516 | 32 | - | 0.0 | nan |
|
| 415 |
+
| 0.3736 | 34 | - | 0.0 | nan |
|
| 416 |
+
| 0.3956 | 36 | - | 0.0 | nan |
|
| 417 |
+
| 0.4176 | 38 | - | 0.0 | nan |
|
| 418 |
+
| 0.4396 | 40 | - | 0.0 | nan |
|
| 419 |
+
| 0.4615 | 42 | - | 0.0 | nan |
|
| 420 |
+
| 0.4835 | 44 | - | 0.0 | nan |
|
| 421 |
+
| 0.5055 | 46 | - | 0.0 | nan |
|
| 422 |
+
| 0.5275 | 48 | - | 0.0 | nan |
|
| 423 |
+
| 0.5495 | 50 | - | 0.0 | nan |
|
| 424 |
+
| 0.5714 | 52 | - | 0.0 | nan |
|
| 425 |
+
| 0.5934 | 54 | - | 0.0 | nan |
|
| 426 |
+
| 0.6154 | 56 | - | 0.0 | nan |
|
| 427 |
+
| 0.6374 | 58 | - | 0.0 | nan |
|
| 428 |
+
| 0.6593 | 60 | - | 0.0 | nan |
|
| 429 |
+
| 0.6813 | 62 | - | 0.0 | nan |
|
| 430 |
+
| 0.7033 | 64 | - | 0.0 | nan |
|
| 431 |
+
| 0.7253 | 66 | - | 0.0 | nan |
|
| 432 |
+
| 0.7473 | 68 | - | 0.0 | nan |
|
| 433 |
+
| 0.7692 | 70 | - | 0.0 | nan |
|
| 434 |
+
| 0.7912 | 72 | - | 0.0 | nan |
|
| 435 |
+
| 0.8132 | 74 | - | 0.0 | nan |
|
| 436 |
+
| 0.8352 | 76 | - | 0.0 | nan |
|
| 437 |
+
| 0.8571 | 78 | - | 0.0 | nan |
|
| 438 |
+
| 0.8791 | 80 | - | 0.0 | nan |
|
| 439 |
+
| 0.9011 | 82 | - | 0.0 | nan |
|
| 440 |
+
| 0.9231 | 84 | - | 0.0 | nan |
|
| 441 |
+
| 0.9451 | 86 | - | 0.0 | nan |
|
| 442 |
+
| 0.9670 | 88 | - | 0.0 | nan |
|
| 443 |
+
| 0.9890 | 90 | - | 0.0 | nan |
|
| 444 |
+
| 1.0110 | 92 | - | 0.0 | nan |
|
| 445 |
+
| 1.0330 | 94 | - | 0.0 | nan |
|
| 446 |
+
| 1.0549 | 96 | - | 0.0 | nan |
|
| 447 |
+
| 1.0769 | 98 | - | 0.0 | nan |
|
| 448 |
+
| 1.0989 | 100 | - | 0.0 | nan |
|
| 449 |
+
| 1.1209 | 102 | - | 0.0 | nan |
|
| 450 |
+
| 1.1429 | 104 | - | 0.0 | nan |
|
| 451 |
+
| 1.1648 | 106 | - | 0.0 | nan |
|
| 452 |
+
| 1.1868 | 108 | - | 0.0 | nan |
|
| 453 |
+
| 1.2088 | 110 | - | 0.0 | nan |
|
| 454 |
+
| 1.2308 | 112 | - | 0.0 | nan |
|
| 455 |
+
| 1.2527 | 114 | - | 0.0 | nan |
|
| 456 |
+
| 1.2747 | 116 | - | 0.0 | nan |
|
| 457 |
+
| 1.2967 | 118 | - | 0.0 | nan |
|
| 458 |
+
| 1.3187 | 120 | - | 0.0 | nan |
|
| 459 |
+
| 1.3407 | 122 | - | 0.0 | nan |
|
| 460 |
+
| 1.3626 | 124 | - | 0.0 | nan |
|
| 461 |
+
| 1.3846 | 126 | - | 0.0 | nan |
|
| 462 |
+
| 1.4066 | 128 | - | 0.0 | nan |
|
| 463 |
+
| 1.4286 | 130 | - | 0.0 | nan |
|
| 464 |
+
| 1.4505 | 132 | - | 0.0 | nan |
|
| 465 |
+
| 1.4725 | 134 | - | 0.0 | nan |
|
| 466 |
+
| 1.4945 | 136 | - | 0.0 | nan |
|
| 467 |
+
| 1.5165 | 138 | - | 0.0 | nan |
|
| 468 |
+
| 1.5385 | 140 | - | 0.0 | nan |
|
| 469 |
+
| 1.5604 | 142 | - | 0.0 | nan |
|
| 470 |
+
| 1.5824 | 144 | - | 0.0 | nan |
|
| 471 |
+
| 1.6044 | 146 | - | 0.0 | nan |
|
| 472 |
+
| 1.6264 | 148 | - | 0.0 | nan |
|
| 473 |
+
| 1.6484 | 150 | - | 0.0 | nan |
|
| 474 |
+
| 1.6703 | 152 | - | 0.0 | nan |
|
| 475 |
+
| 1.6923 | 154 | - | 0.0 | nan |
|
| 476 |
+
| 1.7143 | 156 | - | 0.0 | nan |
|
| 477 |
+
| 1.7363 | 158 | - | 0.0 | nan |
|
| 478 |
+
| 1.7582 | 160 | - | 0.0 | nan |
|
| 479 |
+
| 1.7802 | 162 | - | 0.0 | nan |
|
| 480 |
+
| 1.8022 | 164 | - | 0.0 | nan |
|
| 481 |
+
| 1.8242 | 166 | - | 0.0 | nan |
|
| 482 |
+
| 1.8462 | 168 | - | 0.0 | nan |
|
| 483 |
+
| 1.8681 | 170 | - | 0.0 | nan |
|
| 484 |
+
| 1.8901 | 172 | - | 0.0 | nan |
|
| 485 |
+
| 1.9121 | 174 | - | 0.0 | nan |
|
| 486 |
+
| 1.9341 | 176 | - | 0.0 | nan |
|
| 487 |
+
| 1.9560 | 178 | - | 0.0 | nan |
|
| 488 |
+
| 1.9780 | 180 | - | 0.0 | nan |
|
| 489 |
+
| 2.0 | 182 | - | 0.0 | nan |
|
| 490 |
+
| 2.0220 | 184 | - | 0.0 | nan |
|
| 491 |
+
| 2.0440 | 186 | - | 0.0 | nan |
|
| 492 |
+
| 2.0659 | 188 | - | 0.0 | nan |
|
| 493 |
+
| 2.0879 | 190 | - | 0.0 | nan |
|
| 494 |
+
| 2.1099 | 192 | - | 0.0 | nan |
|
| 495 |
+
| 2.1319 | 194 | - | 0.0 | nan |
|
| 496 |
+
| 2.1538 | 196 | - | 0.0 | nan |
|
| 497 |
+
| 2.1758 | 198 | - | 0.0 | nan |
|
| 498 |
+
| 2.1978 | 200 | - | 0.0 | nan |
|
| 499 |
+
| 2.2198 | 202 | - | 0.0 | nan |
|
| 500 |
+
| 2.2418 | 204 | - | 0.0 | nan |
|
| 501 |
+
| 2.2637 | 206 | - | 0.0 | nan |
|
| 502 |
+
| 2.2857 | 208 | - | 0.0 | nan |
|
| 503 |
+
| 2.3077 | 210 | - | 0.0 | nan |
|
| 504 |
+
| 2.3297 | 212 | - | 0.0 | nan |
|
| 505 |
+
| 2.3516 | 214 | - | 0.0 | nan |
|
| 506 |
+
| 2.3736 | 216 | - | 0.0 | nan |
|
| 507 |
+
| 2.3956 | 218 | - | 0.0 | nan |
|
| 508 |
+
| 2.4176 | 220 | - | 0.0 | nan |
|
| 509 |
+
| 2.4396 | 222 | - | 0.0 | nan |
|
| 510 |
+
| 2.4615 | 224 | - | 0.0 | nan |
|
| 511 |
+
| 2.4835 | 226 | - | 0.0 | nan |
|
| 512 |
+
| 2.5055 | 228 | - | 0.0 | nan |
|
| 513 |
+
| 2.5275 | 230 | - | 0.0 | nan |
|
| 514 |
+
| 2.5495 | 232 | - | 0.0 | nan |
|
| 515 |
+
| 2.5714 | 234 | - | 0.0 | nan |
|
| 516 |
+
| 2.5934 | 236 | - | 0.0 | nan |
|
| 517 |
+
| 2.6154 | 238 | - | 0.0 | nan |
|
| 518 |
+
| 2.6374 | 240 | - | 0.0 | nan |
|
| 519 |
+
| 2.6593 | 242 | - | 0.0 | nan |
|
| 520 |
+
| 2.6813 | 244 | - | 0.0 | nan |
|
| 521 |
+
| 2.7033 | 246 | - | 0.0 | nan |
|
| 522 |
+
| 2.7253 | 248 | - | 0.0 | nan |
|
| 523 |
+
| 2.7473 | 250 | - | 0.0 | nan |
|
| 524 |
+
| 2.7692 | 252 | - | 0.0 | nan |
|
| 525 |
+
| 2.7912 | 254 | - | 0.0 | nan |
|
| 526 |
+
| 2.8132 | 256 | - | 0.0 | nan |
|
| 527 |
+
| 2.8352 | 258 | - | 0.0 | nan |
|
| 528 |
+
| 2.8571 | 260 | - | 0.0 | nan |
|
| 529 |
+
| 2.8791 | 262 | - | 0.0 | nan |
|
| 530 |
+
| 2.9011 | 264 | - | 0.0 | nan |
|
| 531 |
+
| 2.9231 | 266 | - | 0.0 | nan |
|
| 532 |
+
| 2.9451 | 268 | - | 0.0 | nan |
|
| 533 |
+
| 2.9670 | 270 | - | 0.0 | nan |
|
| 534 |
+
| 2.9890 | 272 | - | 0.0 | nan |
|
| 535 |
+
| 3.0110 | 274 | - | 0.0 | nan |
|
| 536 |
+
| 3.0330 | 276 | - | 0.0 | nan |
|
| 537 |
+
| 3.0549 | 278 | - | 0.0 | nan |
|
| 538 |
+
| 3.0769 | 280 | - | 0.0 | nan |
|
| 539 |
+
| 3.0989 | 282 | - | 0.0 | nan |
|
| 540 |
+
| 3.1209 | 284 | - | 0.0 | nan |
|
| 541 |
+
| 3.1429 | 286 | - | 0.0 | nan |
|
| 542 |
+
| 3.1648 | 288 | - | 0.0 | nan |
|
| 543 |
+
| 3.1868 | 290 | - | 0.0 | nan |
|
| 544 |
+
| 3.2088 | 292 | - | 0.0 | nan |
|
| 545 |
+
| 3.2308 | 294 | - | 0.0 | nan |
|
| 546 |
+
| 3.2527 | 296 | - | 0.0 | nan |
|
| 547 |
+
| 3.2747 | 298 | - | 0.0 | nan |
|
| 548 |
+
| 3.2967 | 300 | - | 0.0 | nan |
|
| 549 |
+
| 3.3187 | 302 | - | 0.0 | nan |
|
| 550 |
+
| 3.3407 | 304 | - | 0.0 | nan |
|
| 551 |
+
| 3.3626 | 306 | - | 0.0 | nan |
|
| 552 |
+
| 3.3846 | 308 | - | 0.0 | nan |
|
| 553 |
+
| 3.4066 | 310 | - | 0.0 | nan |
|
| 554 |
+
| 3.4286 | 312 | - | 0.0 | nan |
|
| 555 |
+
| 3.4505 | 314 | - | 0.0 | nan |
|
| 556 |
+
| 3.4725 | 316 | - | 0.0 | nan |
|
| 557 |
+
| 3.4945 | 318 | - | 0.0 | nan |
|
| 558 |
+
| 3.5165 | 320 | - | 0.0 | nan |
|
| 559 |
+
| 3.5385 | 322 | - | 0.0 | nan |
|
| 560 |
+
| 3.5604 | 324 | - | 0.0 | nan |
|
| 561 |
+
| 3.5824 | 326 | - | 0.0 | nan |
|
| 562 |
+
| 3.6044 | 328 | - | 0.0 | nan |
|
| 563 |
+
| 3.6264 | 330 | - | 0.0 | nan |
|
| 564 |
+
| 3.6484 | 332 | - | 0.0 | nan |
|
| 565 |
+
| 3.6703 | 334 | - | 0.0 | nan |
|
| 566 |
+
| 3.6923 | 336 | - | 0.0 | nan |
|
| 567 |
+
| 3.7143 | 338 | - | 0.0 | nan |
|
| 568 |
+
| 3.7363 | 340 | - | 0.0 | nan |
|
| 569 |
+
| 3.7582 | 342 | - | 0.0 | nan |
|
| 570 |
+
| 3.7802 | 344 | - | 0.0 | nan |
|
| 571 |
+
| 3.8022 | 346 | - | 0.0 | nan |
|
| 572 |
+
| 3.8242 | 348 | - | 0.0 | nan |
|
| 573 |
+
| 3.8462 | 350 | - | 0.0 | nan |
|
| 574 |
+
| 3.8681 | 352 | - | 0.0 | nan |
|
| 575 |
+
| 3.8901 | 354 | - | 0.0 | nan |
|
| 576 |
+
| 3.9121 | 356 | - | 0.0 | nan |
|
| 577 |
+
| 3.9341 | 358 | - | 0.0 | nan |
|
| 578 |
+
| 3.9560 | 360 | - | 0.0 | nan |
|
| 579 |
+
| 3.9780 | 362 | - | 0.0 | nan |
|
| 580 |
+
| 4.0 | 364 | - | 0.0 | nan |
|
| 581 |
+
| 4.0220 | 366 | - | 0.0 | nan |
|
| 582 |
+
| 4.0440 | 368 | - | 0.0 | nan |
|
| 583 |
+
| 4.0659 | 370 | - | 0.0 | nan |
|
| 584 |
+
| 4.0879 | 372 | - | 0.0 | nan |
|
| 585 |
+
| 4.1099 | 374 | - | 0.0 | nan |
|
| 586 |
+
| 4.1319 | 376 | - | 0.0 | nan |
|
| 587 |
+
| 4.1538 | 378 | - | 0.0 | nan |
|
| 588 |
+
| 4.1758 | 380 | - | 0.0 | nan |
|
| 589 |
+
| 4.1978 | 382 | - | 0.0 | nan |
|
| 590 |
+
| 4.2198 | 384 | - | 0.0 | nan |
|
| 591 |
+
| 4.2418 | 386 | - | 0.0 | nan |
|
| 592 |
+
| 4.2637 | 388 | - | 0.0 | nan |
|
| 593 |
+
| 4.2857 | 390 | - | 0.0 | nan |
|
| 594 |
+
| 4.3077 | 392 | - | 0.0 | nan |
|
| 595 |
+
| 4.3297 | 394 | - | 0.0 | nan |
|
| 596 |
+
| 4.3516 | 396 | - | 0.0 | nan |
|
| 597 |
+
| 4.3736 | 398 | - | 0.0 | nan |
|
| 598 |
+
| 4.3956 | 400 | - | 0.0 | nan |
|
| 599 |
+
| 4.4176 | 402 | - | 0.0 | nan |
|
| 600 |
+
| 4.4396 | 404 | - | 0.0 | nan |
|
| 601 |
+
| 4.4615 | 406 | - | 0.0 | nan |
|
| 602 |
+
| 4.4835 | 408 | - | 0.0 | nan |
|
| 603 |
+
| 4.5055 | 410 | - | 0.0 | nan |
|
| 604 |
+
| 4.5275 | 412 | - | 0.0 | nan |
|
| 605 |
+
| 4.5495 | 414 | - | 0.0 | nan |
|
| 606 |
+
| 4.5714 | 416 | - | 0.0 | nan |
|
| 607 |
+
| 4.5934 | 418 | - | 0.0 | nan |
|
| 608 |
+
| 4.6154 | 420 | - | 0.0 | nan |
|
| 609 |
+
| 4.6374 | 422 | - | 0.0 | nan |
|
| 610 |
+
| 4.6593 | 424 | - | 0.0 | nan |
|
| 611 |
+
| 4.6813 | 426 | - | 0.0 | nan |
|
| 612 |
+
| 4.7033 | 428 | - | 0.0 | nan |
|
| 613 |
+
| 4.7253 | 430 | - | 0.0 | nan |
|
| 614 |
+
| 4.7473 | 432 | - | 0.0 | nan |
|
| 615 |
+
| 4.7692 | 434 | - | 0.0 | nan |
|
| 616 |
+
| 4.7912 | 436 | - | 0.0 | nan |
|
| 617 |
+
| 4.8132 | 438 | - | 0.0 | nan |
|
| 618 |
+
| 4.8352 | 440 | - | 0.0 | nan |
|
| 619 |
+
| 4.8571 | 442 | - | 0.0 | nan |
|
| 620 |
+
| 4.8791 | 444 | - | 0.0 | nan |
|
| 621 |
+
| 4.9011 | 446 | - | 0.0 | nan |
|
| 622 |
+
| 4.9231 | 448 | - | 0.0 | nan |
|
| 623 |
+
| 4.9451 | 450 | - | 0.0 | nan |
|
| 624 |
+
| 4.9670 | 452 | - | 0.0 | nan |
|
| 625 |
+
| 4.9890 | 454 | - | 0.0 | nan |
|
| 626 |
+
| 5.0110 | 456 | - | 0.0 | nan |
|
| 627 |
+
| 5.0330 | 458 | - | 0.0 | nan |
|
| 628 |
+
| 5.0549 | 460 | - | 0.0 | nan |
|
| 629 |
+
| 5.0769 | 462 | - | 0.0 | nan |
|
| 630 |
+
| 5.0989 | 464 | - | 0.0 | nan |
|
| 631 |
+
| 5.1209 | 466 | - | 0.0 | nan |
|
| 632 |
+
| 5.1429 | 468 | - | 0.0 | nan |
|
| 633 |
+
| 5.1648 | 470 | - | 0.0 | nan |
|
| 634 |
+
| 5.1868 | 472 | - | 0.0 | nan |
|
| 635 |
+
| 5.2088 | 474 | - | 0.0 | nan |
|
| 636 |
+
| 5.2308 | 476 | - | 0.0 | nan |
|
| 637 |
+
| 5.2527 | 478 | - | 0.0 | nan |
|
| 638 |
+
| 5.2747 | 480 | - | 0.0 | nan |
|
| 639 |
+
| 5.2967 | 482 | - | 0.0 | nan |
|
| 640 |
+
| 5.3187 | 484 | - | 0.0 | nan |
|
| 641 |
+
| 5.3407 | 486 | - | 0.0 | nan |
|
| 642 |
+
| 5.3626 | 488 | - | 0.0 | nan |
|
| 643 |
+
| 5.3846 | 490 | - | 0.0 | nan |
|
| 644 |
+
| 5.4066 | 492 | - | 0.0 | nan |
|
| 645 |
+
| 5.4286 | 494 | - | 0.0 | nan |
|
| 646 |
+
| 5.4505 | 496 | - | 0.0 | nan |
|
| 647 |
+
| 5.4725 | 498 | - | 0.0 | nan |
|
| 648 |
+
| **5.4945** | **500** | **0.0** | **0.0** | **nan** |
|
| 649 |
+
| 5.5165 | 502 | - | 0.0 | nan |
|
| 650 |
+
| 5.5385 | 504 | - | 0.0 | nan |
|
| 651 |
+
| 5.5604 | 506 | - | 0.0 | nan |
|
| 652 |
+
| 5.5824 | 508 | - | 0.0 | nan |
|
| 653 |
+
| 5.6044 | 510 | - | 0.0 | nan |
|
| 654 |
+
| 5.6264 | 512 | - | 0.0 | nan |
|
| 655 |
+
| 5.6484 | 514 | - | 0.0 | nan |
|
| 656 |
+
| 5.6703 | 516 | - | 0.0 | nan |
|
| 657 |
+
| 5.6923 | 518 | - | 0.0 | nan |
|
| 658 |
+
| 5.7143 | 520 | - | 0.0 | nan |
|
| 659 |
+
| 5.7363 | 522 | - | 0.0 | nan |
|
| 660 |
+
| 5.7582 | 524 | - | 0.0 | nan |
|
| 661 |
+
| 5.7802 | 526 | - | 0.0 | nan |
|
| 662 |
+
| 5.8022 | 528 | - | 0.0 | nan |
|
| 663 |
+
| 5.8242 | 530 | - | 0.0 | nan |
|
| 664 |
+
| 5.8462 | 532 | - | 0.0 | nan |
|
| 665 |
+
| 5.8681 | 534 | - | 0.0 | nan |
|
| 666 |
+
| 5.8901 | 536 | - | 0.0 | nan |
|
| 667 |
+
| 5.9121 | 538 | - | 0.0 | nan |
|
| 668 |
+
| 5.9341 | 540 | - | 0.0 | nan |
|
| 669 |
+
| 5.9560 | 542 | - | 0.0 | nan |
|
| 670 |
+
| 5.9780 | 544 | - | 0.0 | nan |
|
| 671 |
+
| 6.0 | 546 | - | 0.0 | nan |
|
| 672 |
+
| 6.0220 | 548 | - | 0.0 | nan |
|
| 673 |
+
| 6.0440 | 550 | - | 0.0 | nan |
|
| 674 |
+
| 6.0659 | 552 | - | 0.0 | nan |
|
| 675 |
+
| 6.0879 | 554 | - | 0.0 | nan |
|
| 676 |
+
| 6.1099 | 556 | - | 0.0 | nan |
|
| 677 |
+
| 6.1319 | 558 | - | 0.0 | nan |
|
| 678 |
+
| 6.1538 | 560 | - | 0.0 | nan |
|
| 679 |
+
| 6.1758 | 562 | - | 0.0 | nan |
|
| 680 |
+
| 6.1978 | 564 | - | 0.0 | nan |
|
| 681 |
+
| 6.2198 | 566 | - | 0.0 | nan |
|
| 682 |
+
| 6.2418 | 568 | - | 0.0 | nan |
|
| 683 |
+
| 6.2637 | 570 | - | 0.0 | nan |
|
| 684 |
+
| 6.2857 | 572 | - | 0.0 | nan |
|
| 685 |
+
| 6.3077 | 574 | - | 0.0 | nan |
|
| 686 |
+
| 6.3297 | 576 | - | 0.0 | nan |
|
| 687 |
+
| 6.3516 | 578 | - | 0.0 | nan |
|
| 688 |
+
| 6.3736 | 580 | - | 0.0 | nan |
|
| 689 |
+
| 6.3956 | 582 | - | 0.0 | nan |
|
| 690 |
+
| 6.4176 | 584 | - | 0.0 | nan |
|
| 691 |
+
| 6.4396 | 586 | - | 0.0 | nan |
|
| 692 |
+
| 6.4615 | 588 | - | 0.0 | nan |
|
| 693 |
+
| 6.4835 | 590 | - | 0.0 | nan |
|
| 694 |
+
| 6.5055 | 592 | - | 0.0 | nan |
|
| 695 |
+
| 6.5275 | 594 | - | 0.0 | nan |
|
| 696 |
+
| 6.5495 | 596 | - | 0.0 | nan |
|
| 697 |
+
| 6.5714 | 598 | - | 0.0 | nan |
|
| 698 |
+
| 6.5934 | 600 | - | 0.0 | nan |
|
| 699 |
+
| 6.6154 | 602 | - | 0.0 | nan |
|
| 700 |
+
| 6.6374 | 604 | - | 0.0 | nan |
|
| 701 |
+
| 6.6593 | 606 | - | 0.0 | nan |
|
| 702 |
+
| 6.6813 | 608 | - | 0.0 | nan |
|
| 703 |
+
| 6.7033 | 610 | - | 0.0 | nan |
|
| 704 |
+
| 6.7253 | 612 | - | 0.0 | nan |
|
| 705 |
+
| 6.7473 | 614 | - | 0.0 | nan |
|
| 706 |
+
| 6.7692 | 616 | - | 0.0 | nan |
|
| 707 |
+
| 6.7912 | 618 | - | 0.0 | nan |
|
| 708 |
+
| 6.8132 | 620 | - | 0.0 | nan |
|
| 709 |
+
| 6.8352 | 622 | - | 0.0 | nan |
|
| 710 |
+
| 6.8571 | 624 | - | 0.0 | nan |
|
| 711 |
+
| 6.8791 | 626 | - | 0.0 | nan |
|
| 712 |
+
| 6.9011 | 628 | - | 0.0 | nan |
|
| 713 |
+
| 6.9231 | 630 | - | 0.0 | nan |
|
| 714 |
+
| 6.9451 | 632 | - | 0.0 | nan |
|
| 715 |
+
| 6.9670 | 634 | - | 0.0 | nan |
|
| 716 |
+
| 6.9890 | 636 | - | 0.0 | nan |
|
| 717 |
+
| 7.0110 | 638 | - | 0.0 | nan |
|
| 718 |
+
| 7.0330 | 640 | - | 0.0 | nan |
|
| 719 |
+
| 7.0549 | 642 | - | 0.0 | nan |
|
| 720 |
+
| 7.0769 | 644 | - | 0.0 | nan |
|
| 721 |
+
| 7.0989 | 646 | - | 0.0 | nan |
|
| 722 |
+
| 7.1209 | 648 | - | 0.0 | nan |
|
| 723 |
+
| 7.1429 | 650 | - | 0.0 | nan |
|
| 724 |
+
| 7.1648 | 652 | - | 0.0 | nan |
|
| 725 |
+
| 7.1868 | 654 | - | 0.0 | nan |
|
| 726 |
+
| 7.2088 | 656 | - | 0.0 | nan |
|
| 727 |
+
| 7.2308 | 658 | - | 0.0 | nan |
|
| 728 |
+
| 7.2527 | 660 | - | 0.0 | nan |
|
| 729 |
+
| 7.2747 | 662 | - | 0.0 | nan |
|
| 730 |
+
| 7.2967 | 664 | - | 0.0 | nan |
|
| 731 |
+
| 7.3187 | 666 | - | 0.0 | nan |
|
| 732 |
+
| 7.3407 | 668 | - | 0.0 | nan |
|
| 733 |
+
| 7.3626 | 670 | - | 0.0 | nan |
|
| 734 |
+
| 7.3846 | 672 | - | 0.0 | nan |
|
| 735 |
+
| 7.4066 | 674 | - | 0.0 | nan |
|
| 736 |
+
| 7.4286 | 676 | - | 0.0 | nan |
|
| 737 |
+
| 7.4505 | 678 | - | 0.0 | nan |
|
| 738 |
+
| 7.4725 | 680 | - | 0.0 | nan |
|
| 739 |
+
| 7.4945 | 682 | - | 0.0 | nan |
|
| 740 |
+
| 7.5165 | 684 | - | 0.0 | nan |
|
| 741 |
+
| 7.5385 | 686 | - | 0.0 | nan |
|
| 742 |
+
| 7.5604 | 688 | - | 0.0 | nan |
|
| 743 |
+
| 7.5824 | 690 | - | 0.0 | nan |
|
| 744 |
+
| 7.6044 | 692 | - | 0.0 | nan |
|
| 745 |
+
| 7.6264 | 694 | - | 0.0 | nan |
|
| 746 |
+
| 7.6484 | 696 | - | 0.0 | nan |
|
| 747 |
+
| 7.6703 | 698 | - | 0.0 | nan |
|
| 748 |
+
| 7.6923 | 700 | - | 0.0 | nan |
|
| 749 |
+
| 7.7143 | 702 | - | 0.0 | nan |
|
| 750 |
+
| 7.7363 | 704 | - | 0.0 | nan |
|
| 751 |
+
| 7.7582 | 706 | - | 0.0 | nan |
|
| 752 |
+
| 7.7802 | 708 | - | 0.0 | nan |
|
| 753 |
+
| 7.8022 | 710 | - | 0.0 | nan |
|
| 754 |
+
| 7.8242 | 712 | - | 0.0 | nan |
|
| 755 |
+
| 7.8462 | 714 | - | 0.0 | nan |
|
| 756 |
+
| 7.8681 | 716 | - | 0.0 | nan |
|
| 757 |
+
| 7.8901 | 718 | - | 0.0 | nan |
|
| 758 |
+
| 7.9121 | 720 | - | 0.0 | nan |
|
| 759 |
+
| 7.9341 | 722 | - | 0.0 | nan |
|
| 760 |
+
| 7.9560 | 724 | - | 0.0 | nan |
|
| 761 |
+
| 7.9780 | 726 | - | 0.0 | nan |
|
| 762 |
+
| 8.0 | 728 | - | 0.0 | nan |
|
| 763 |
+
| 8.0220 | 730 | - | 0.0 | nan |
|
| 764 |
+
| 8.0440 | 732 | - | 0.0 | nan |
|
| 765 |
+
| 8.0659 | 734 | - | 0.0 | nan |
|
| 766 |
+
| 8.0879 | 736 | - | 0.0 | nan |
|
| 767 |
+
| 8.1099 | 738 | - | 0.0 | nan |
|
| 768 |
+
| 8.1319 | 740 | - | 0.0 | nan |
|
| 769 |
+
| 8.1538 | 742 | - | 0.0 | nan |
|
| 770 |
+
| 8.1758 | 744 | - | 0.0 | nan |
|
| 771 |
+
| 8.1978 | 746 | - | 0.0 | nan |
|
| 772 |
+
| 8.2198 | 748 | - | 0.0 | nan |
|
| 773 |
+
| 8.2418 | 750 | - | 0.0 | nan |
|
| 774 |
+
| 8.2637 | 752 | - | 0.0 | nan |
|
| 775 |
+
| 8.2857 | 754 | - | 0.0 | nan |
|
| 776 |
+
| 8.3077 | 756 | - | 0.0 | nan |
|
| 777 |
+
| 8.3297 | 758 | - | 0.0 | nan |
|
| 778 |
+
| 8.3516 | 760 | - | 0.0 | nan |
|
| 779 |
+
| 8.3736 | 762 | - | 0.0 | nan |
|
| 780 |
+
| 8.3956 | 764 | - | 0.0 | nan |
|
| 781 |
+
| 8.4176 | 766 | - | 0.0 | nan |
|
| 782 |
+
| 8.4396 | 768 | - | 0.0 | nan |
|
| 783 |
+
| 8.4615 | 770 | - | 0.0 | nan |
|
| 784 |
+
| 8.4835 | 772 | - | 0.0 | nan |
|
| 785 |
+
| 8.5055 | 774 | - | 0.0 | nan |
|
| 786 |
+
| 8.5275 | 776 | - | 0.0 | nan |
|
| 787 |
+
| 8.5495 | 778 | - | 0.0 | nan |
|
| 788 |
+
| 8.5714 | 780 | - | 0.0 | nan |
|
| 789 |
+
| 8.5934 | 782 | - | 0.0 | nan |
|
| 790 |
+
| 8.6154 | 784 | - | 0.0 | nan |
|
| 791 |
+
| 8.6374 | 786 | - | 0.0 | nan |
|
| 792 |
+
| 8.6593 | 788 | - | 0.0 | nan |
|
| 793 |
+
| 8.6813 | 790 | - | 0.0 | nan |
|
| 794 |
+
| 8.7033 | 792 | - | 0.0 | nan |
|
| 795 |
+
| 8.7253 | 794 | - | 0.0 | nan |
|
| 796 |
+
| 8.7473 | 796 | - | 0.0 | nan |
|
| 797 |
+
| 8.7692 | 798 | - | 0.0 | nan |
|
| 798 |
+
| 8.7912 | 800 | - | 0.0 | nan |
|
| 799 |
+
| 8.8132 | 802 | - | 0.0 | nan |
|
| 800 |
+
| 8.8352 | 804 | - | 0.0 | nan |
|
| 801 |
+
| 8.8571 | 806 | - | 0.0 | nan |
|
| 802 |
+
| 8.8791 | 808 | - | 0.0 | nan |
|
| 803 |
+
| 8.9011 | 810 | - | 0.0 | nan |
|
| 804 |
+
| 8.9231 | 812 | - | 0.0 | nan |
|
| 805 |
+
| 8.9451 | 814 | - | 0.0 | nan |
|
| 806 |
+
| 8.9670 | 816 | - | 0.0 | nan |
|
| 807 |
+
| 8.9890 | 818 | - | 0.0 | nan |
|
| 808 |
+
| 9.0110 | 820 | - | 0.0 | nan |
|
| 809 |
+
| 9.0330 | 822 | - | 0.0 | nan |
|
| 810 |
+
| 9.0549 | 824 | - | 0.0 | nan |
|
| 811 |
+
| 9.0769 | 826 | - | 0.0 | nan |
|
| 812 |
+
| 9.0989 | 828 | - | 0.0 | nan |
|
| 813 |
+
| 9.1209 | 830 | - | 0.0 | nan |
|
| 814 |
+
| 9.1429 | 832 | - | 0.0 | nan |
|
| 815 |
+
| 9.1648 | 834 | - | 0.0 | nan |
|
| 816 |
+
| 9.1868 | 836 | - | 0.0 | nan |
|
| 817 |
+
| 9.2088 | 838 | - | 0.0 | nan |
|
| 818 |
+
| 9.2308 | 840 | - | 0.0 | nan |
|
| 819 |
+
| 9.2527 | 842 | - | 0.0 | nan |
|
| 820 |
+
| 9.2747 | 844 | - | 0.0 | nan |
|
| 821 |
+
| 9.2967 | 846 | - | 0.0 | nan |
|
| 822 |
+
| 9.3187 | 848 | - | 0.0 | nan |
|
| 823 |
+
| 9.3407 | 850 | - | 0.0 | nan |
|
| 824 |
+
| 9.3626 | 852 | - | 0.0 | nan |
|
| 825 |
+
| 9.3846 | 854 | - | 0.0 | nan |
|
| 826 |
+
| 9.4066 | 856 | - | 0.0 | nan |
|
| 827 |
+
| 9.4286 | 858 | - | 0.0 | nan |
|
| 828 |
+
| 9.4505 | 860 | - | 0.0 | nan |
|
| 829 |
+
| 9.4725 | 862 | - | 0.0 | nan |
|
| 830 |
+
| 9.4945 | 864 | - | 0.0 | nan |
|
| 831 |
+
| 9.5165 | 866 | - | 0.0 | nan |
|
| 832 |
+
| 9.5385 | 868 | - | 0.0 | nan |
|
| 833 |
+
| 9.5604 | 870 | - | 0.0 | nan |
|
| 834 |
+
| 9.5824 | 872 | - | 0.0 | nan |
|
| 835 |
+
| 9.6044 | 874 | - | 0.0 | nan |
|
| 836 |
+
| 9.6264 | 876 | - | 0.0 | nan |
|
| 837 |
+
| 9.6484 | 878 | - | 0.0 | nan |
|
| 838 |
+
| 9.6703 | 880 | - | 0.0 | nan |
|
| 839 |
+
| 9.6923 | 882 | - | 0.0 | nan |
|
| 840 |
+
| 9.7143 | 884 | - | 0.0 | nan |
|
| 841 |
+
| 9.7363 | 886 | - | 0.0 | nan |
|
| 842 |
+
| 9.7582 | 888 | - | 0.0 | nan |
|
| 843 |
+
| 9.7802 | 890 | - | 0.0 | nan |
|
| 844 |
+
| 9.8022 | 892 | - | 0.0 | nan |
|
| 845 |
+
| 9.8242 | 894 | - | 0.0 | nan |
|
| 846 |
+
| 9.8462 | 896 | - | 0.0 | nan |
|
| 847 |
+
| 9.8681 | 898 | - | 0.0 | nan |
|
| 848 |
+
| 9.8901 | 900 | - | 0.0 | nan |
|
| 849 |
+
| 9.9121 | 902 | - | 0.0 | nan |
|
| 850 |
+
| 9.9341 | 904 | - | 0.0 | nan |
|
| 851 |
+
| 9.9560 | 906 | - | 0.0 | nan |
|
| 852 |
+
| 9.9780 | 908 | - | 0.0 | nan |
|
| 853 |
+
| 10.0 | 910 | - | 0.0 | nan |
|
| 854 |
+
|
| 855 |
+
* The bold row denotes the saved checkpoint.
|
| 856 |
+
</details>
|
| 857 |
+
|
| 858 |
+
### Framework Versions
|
| 859 |
+
- Python: 3.10.12
|
| 860 |
+
- Sentence Transformers: 3.0.1
|
| 861 |
+
- Transformers: 4.41.2
|
| 862 |
+
- PyTorch: 2.0.1+cu118
|
| 863 |
+
- Accelerate: 0.31.0
|
| 864 |
+
- Datasets: 2.20.0
|
| 865 |
+
- Tokenizers: 0.19.1
|
| 866 |
+
|
| 867 |
+
## Citation
|
| 868 |
+
|
| 869 |
+
### BibTeX
|
| 870 |
+
|
| 871 |
+
#### Sentence Transformers
|
| 872 |
+
```bibtex
|
| 873 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 874 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 875 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 876 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 877 |
+
month = "11",
|
| 878 |
+
year = "2019",
|
| 879 |
+
publisher = "Association for Computational Linguistics",
|
| 880 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 881 |
+
}
|
| 882 |
+
```
|
| 883 |
+
|
| 884 |
+
#### CoSENTLoss
|
| 885 |
+
```bibtex
|
| 886 |
+
@online{kexuefm-8847,
|
| 887 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 888 |
+
author={Su Jianlin},
|
| 889 |
+
year={2022},
|
| 890 |
+
month={Jan},
|
| 891 |
+
url={https://kexue.fm/archives/8847},
|
| 892 |
+
}
|
| 893 |
+
```
|
| 894 |
+
|
| 895 |
+
<!--
|
| 896 |
+
## Glossary
|
| 897 |
+
|
| 898 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 899 |
+
-->
|
| 900 |
+
|
| 901 |
+
<!--
|
| 902 |
+
## Model Card Authors
|
| 903 |
+
|
| 904 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 905 |
+
-->
|
| 906 |
+
|
| 907 |
+
<!--
|
| 908 |
+
## Model Card Contact
|
| 909 |
+
|
| 910 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 911 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/workspace/",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.41.2",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 30522
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.0.1",
|
| 4 |
+
"transformers": "4.41.2",
|
| 5 |
+
"pytorch": "2.0.1+cu118"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1377e9af0ca0b016a9f2aa584d6fc71ab3ea6804fae21ef9fb1416e2944057ac
|
| 3 |
+
size 90864192
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 128,
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "[PAD]",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "[SEP]",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"strip_accents": null,
|
| 59 |
+
"tokenize_chinese_chars": true,
|
| 60 |
+
"tokenizer_class": "BertTokenizer",
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "[UNK]"
|
| 64 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|