--- datasets: - Programming-Language/codeagent-python language: - en base_model: - google/flan-t5-base pipeline_tag: text-generation library_name: transformers license: apache-2.0 --- # flan-python-expert 🚀 This model is a fine-tuned version of [`google/flan-t5-base`](https://huggingface.co/google/flan-t5-base) on the [`codeagent-python`](https://huggingface.co/datasets/Programming-Language/codeagent-python) dataset. It is designed to generate Python code from natural language instructions. --- ## 🧠 Model Details - **Base Model:** FLAN-T5 Base - **Fine-tuned on:** Python code dataset (`codeagent-python`) - **Task:** Text-to-code generation - **Language:** English - **Framework:** 🤗 Transformers - **Library:** `adapter-transformers` --- ## 🏋️ Training The model was trained using the following setup: ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir="flan-python-expert", evaluation_strategy="epoch", learning_rate=2e-6, per_device_train_batch_size=1, per_device_eval_batch_size=1, num_train_epochs=1, weight_decay=0.01, save_total_limit=2, logging_steps=1, push_to_hub=False, ) ``` Trained for 1 epoch Optimized for low-resource fine-tuning Training performed using Hugging Face Trainer ## Example Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("MalikIbrar/flan-python-expert") tokenizer = AutoTokenizer.from_pretrained("MalikIbrar/flan-python-expert") input_text = "Write a Python function to check if a number is prime." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ---