shevek commited on
Commit
9c85c15
·
1 Parent(s): 03fb9b5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: MultiLabel_V3
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # MultiLabel_V3
16
+
17
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.9683
20
+ - Accuracy: 0.7370
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0002
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 2
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
+ | 0.8572 | 0.1 | 100 | 1.1607 | 0.6466 |
52
+ | 0.8578 | 0.2 | 200 | 1.1956 | 0.6499 |
53
+ | 0.7362 | 0.3 | 300 | 1.1235 | 0.6885 |
54
+ | 0.8569 | 0.39 | 400 | 1.0460 | 0.6891 |
55
+ | 0.4851 | 0.49 | 500 | 1.1213 | 0.6891 |
56
+ | 0.7252 | 0.59 | 600 | 1.1512 | 0.6720 |
57
+ | 0.6333 | 0.69 | 700 | 1.1039 | 0.6913 |
58
+ | 0.6239 | 0.79 | 800 | 1.0636 | 0.7001 |
59
+ | 0.2768 | 0.89 | 900 | 1.0386 | 0.7073 |
60
+ | 0.4872 | 0.99 | 1000 | 1.0311 | 0.7062 |
61
+ | 0.3049 | 1.09 | 1100 | 1.0437 | 0.7155 |
62
+ | 0.1435 | 1.18 | 1200 | 1.0343 | 0.7222 |
63
+ | 0.2088 | 1.28 | 1300 | 1.0784 | 0.7194 |
64
+ | 0.4972 | 1.38 | 1400 | 1.1072 | 0.7166 |
65
+ | 0.3604 | 1.48 | 1500 | 1.0438 | 0.7150 |
66
+ | 0.2726 | 1.58 | 1600 | 1.0077 | 0.7293 |
67
+ | 0.3106 | 1.68 | 1700 | 1.0029 | 0.7326 |
68
+ | 0.3259 | 1.78 | 1800 | 0.9906 | 0.7310 |
69
+ | 0.3323 | 1.88 | 1900 | 0.9729 | 0.7359 |
70
+ | 0.2998 | 1.97 | 2000 | 0.9683 | 0.7370 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.26.1
76
+ - Pytorch 1.13.1+cu116
77
+ - Datasets 2.10.1
78
+ - Tokenizers 0.13.2