Safetensors
qwen2
File size: 57,855 Bytes
dbf0c7e
9d00b78
dbf0c7e
 
 
 
90c58fe
dbf0c7e
 
e6b3665
fc26828
 
b2399b2
348203c
9806546
348203c
b2399b2
 
fc26828
b2399b2
639d17a
9806546
639d17a
b2399b2
639d17a
b2399b2
639d17a
b2399b2
fc26828
 
e6b3665
fc26828
9806546
fc26828
e6b3665
 
9806546
e6b3665
 
 
348203c
 
 
9806546
e6b3665
9806546
e6b3665
9d00b78
 
dbf0c7e
 
56dc8bb
dbf0c7e
e6b3665
639d17a
d3783fe
 
 
 
 
 
 
 
639d17a
56dc8bb
e6b3665
56dc8bb
dbf0c7e
 
 
9c9bfe3
dbf0c7e
9c9bfe3
 
 
 
 
 
 
 
 
 
 
 
dbf0c7e
9d00b78
 
 
 
2ab9b5a
c1a79df
 
 
 
 
 
 
 
 
2ab9b5a
 
 
c1a79df
 
 
 
 
 
 
 
 
2ab9b5a
 
 
 
c1a79df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab9b5a
 
46bbe74
 
9d00b78
ec21158
0faa7ad
 
 
94c5433
0b00e32
 
8485bb9
0b00e32
8485bb9
c1a79df
 
 
 
 
94c5433
 
 
c1a79df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2a2c7
 
0b00e32
c15b2e9
c1a79df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6dba3
94c5433
0faa7ad
c7d8ebe
 
 
 
8485bb9
c7d8ebe
8485bb9
c1a79df
 
 
 
 
c7d8ebe
 
 
c1a79df
 
 
 
 
20a8116
c1a79df
c7d8ebe
 
 
c1a79df
 
 
 
1c6dba3
 
c1a79df
 
 
 
1c6dba3
 
c1a79df
 
 
 
1c6dba3
 
c1a79df
 
 
 
1c6dba3
c7d8ebe
9d00b78
dbf0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2a2c7
dbf0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2a2c7
dbf0c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0ce81
c7d8ebe
 
 
 
 
 
 
dbf0c7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
---
license: cc-by-4.0
datasets:
- Salesforce/xlam-function-calling-60k
base_model: Qwen/Qwen2-7B-Instruct
---
# Hammer-7b Function Calling Model

## Introduction
Function calling enables LLMs to invoke specific functions, integrating external features, accessing real-world data, and extending beyond text generation. We present Hammer, a finetuned model based on Qwen2-7B-Instruct. Unlike previous works emphasizing on data refinement (cite xlam, IBM…), our focus is on applying novel training techniques to address recognized issues in existing function-calling models. Such issues are listed below:

1. Hallucination

- a)  Function name hallucination: The model, rather than selecting from the provided function pool, has a tendency to generate a new function based on its own world knowledge.

- b)  Parameter name hallucination: When the user fails to provide sufficient information to fulfill their request (lacking necessary parameters), the model is inclined to fill in the parameters relying on its own knowledge.


2. Overfitting

- a)  Function name and parameter name: The model pays excessive attention to the function name and parameter name while neglecting other information such as description, input, and output. This leads to a lack of generalization and reduces the model's ability to handle diverse scenarios. 

- b)  Parameter filling: The model does not extract parameters based on the provided function definition. Instead, it fills in the parameters based on the learned knowledge from training. For instance, when expecting "San Francisco", "San Francisco, CA" might be filled in because in the training data, all "San Francisco"s are followed by "CA"s. 

- c)  Default value filling: The model fills in parameter default values according to patterns in the training data rather than the provided function definition. For example, when "default = inch" is most common in the training data, the model is likely to fill in "inch" instead of "cm", even though the latter is the provided default value in the function definition. 

- d)  Ordering of provided function list and parameter list: When the provided function list or parameter list have consistent orderings during training, it is possible that the model learns patterns that are not intended, such as remembering the orderings. 


3. Instructions missing key information
Occasionally, user instructions may lack essential details vital for effective function execution. For instance, the command "Set an alarm to wake me up”, lacks a time specification. Ideally, in such instances, the model should either request additional information or merely output the function name, excluding the unspecified parameter.  Existing methods either disregard such situations or output an “irrelevant” signal, indicating the query is unfulfillable with the given tools.


4. Prompt design
Inconsistency in instruction formatting between training and testing can result in a significant performance gap. For example, during the training phase, the default value is provided in the parameter description, while during testing, the default value is provided as a separate parameter in JSON format.


In this work, we focus on introducing function calling abilities with an inherent emphasis on addressing the aforementioned limitations. We summarize our techniques as follows:

1.Masking: We propose function/parameter mask technique, a dynamic data augmentation method. This approach enhances the model's focus on tool descriptions rather than the tool names within tool definitions. The masking operations include:
- a)  Function Name Masking: Replacing the function name with a randomly generated string to ensure the model pays more attention to the function description rather than function names.
- b)  Parameter Name Masking: Replacing the parameter name with a randomly generated string to ensure the model pays more attention to the parameter description rather than parameter names.
- c)  Default Value Masking: Default values are replaced with random strings to prevent overfitting to specific values.

2.Function Shuffling: Random reordering of functions and parameters during training deters the model from memorizing their sequence.

3.Prompt Optimization: As our model concentrates on function/parameter descriptions, we incorporate default value information into those descriptions to boost performance at inference.

Addressing these multifaceted issues necessitates a refined and sophisticated approach to model training and optimization. To this end, we have meticulously developed an advanced function calling model through the fine-tuning of the *Qwen2-7B-instruct*. The ensuing sections provide a comprehensive overview of the methods and processes implemented during the training phase to mitigate these issues effectively:

1. **Data Extraction and Preparation**:
    We extracted 7.5k sample data from *Salesforce/xlam-function-calling-60k* and removed the target tools from the candidate toolset to generate irrelevant data samples. This data was mixed with 60k XLAM data samples for training.

2. **Fine Tuning**:
    Our fine-tuning process primarily leveraged the Low-Rank Adaptation (LoRA) technique, incorporating specific hyperparameters and strategies to ensure optimal model performance.
   Masking And Function Shuffling Technique was used during the training process;The Training Setup is as follows:
  - **LoRA Rank**: 32
  - **Learning Rate**: 5e-5
  - **Warmup Steps**: 100
  - **LR Scheduler Type**: Cosine
  - **Batch Size**: 4
  - **Gradient Accumulation Steps**: 2
  - **Hardware**: 4x A100 (80G) GPUs
    

3. **Inference**:
   During inference, since our model focuses more on function/parameter descriptions, we added default value information in parameter descriptions to obtain better performance.

## Supported Function Calling Types

The model is capable of handling various function calling scenarios. Here, the supported types are classified based on the nature of inputs and outputs:

### Input Types
- 1. **Single Function Input**
- 2. **Multiple Functions Input**

### Output Types

- 1. **Simple Function Calling**
- 2. **Parallel Function Calling**
- 3. **Irrelevance**
- 4. **Relevance**

By categorizing function calling types based on inputs and outputs, our model provides robust support for a wide range of function calling scenarios, ensuring both flexibility and precision in handling diverse tasks.


## Performance

1. First, we evaluate our model on the Berkeley Function-Calling Leaderboard (BFCL), and the performance is as follows:
<style type="text/css">
.tg  {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-9id2{color:#007BFF;text-align:center;vertical-align:middle}
.tg .tg-pchv{color:#212529;font-weight:bold;text-align:center;vertical-align:middle}
.tg .tg-qai4{color:#212529;text-align:center;vertical-align:middle}
.tg .tg-p59o{color:#00E;text-align:center;text-decoration:underline;vertical-align:top}
</style>
<table class="tg"><thead>
  <tr>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Rank</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Overall</span> <span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Acc</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Model</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">AST</span> <span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Summary</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Exec</span> <span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Summary</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Irrelevance</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Relevance</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">Organization</span></th>
    <th class="tg-pchv"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#212529">License</span></th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">1</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.79</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-0125-Preview (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.5</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">89.25</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">61.35</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">97.56</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">2</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-1106-Preview (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">86.31</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">87.38</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">64.98</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">90.24</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">3</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">84.74</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-0613 (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">84.66</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">87.57</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">75.57</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">82.93</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">4</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.92</span></td>
    <td class="tg-9id2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#007BFF">Hammer-7b</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">78.7</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">89.71</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">72.87</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">92.68</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">MadeAgents</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">cc-by-nc-4.0</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">5</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.89</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-turbo-2024-04-09 (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.41</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">88.12</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">61.82</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">82.93</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">6</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.35</span></td>
    <td class="tg-p59o"><a href="https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/">GPT-4o-mini-2024-07-18 (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.51</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">87.95</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">79.2</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.49</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">7</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.13</span></td>
    <td class="tg-p59o"><a href="https://openai.com/index/hello-gpt-4o/">GPT-4o-2024-05-13 (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.83</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.12</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">77.44</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">78.05</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">8</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">82.55</span></td>
    <td class="tg-p59o"><a href="https://huggingface.co/meetkai/functionary-medium-v3.1">Functionary-Medium-v3.1 (FC)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">81.06</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">89.32</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">73.23</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">70.73</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">MeetKai</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">MIT</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">9</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">81.78</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-1106-Preview (FC)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">77.95</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">87.61</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">72.7</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">82.93</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">10</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">81.59</span></td>
    <td class="tg-p59o"><a href="https://llama.meta.com/llama3">Meta-Llama-3-70B-Instruct (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.15</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">88.04</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">50.47</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">92.68</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Meta</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Meta</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Llama</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">3</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Community</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">11</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.88</span></td>
    <td class="tg-p59o"><a href="https://www.anthropic.com/news/claude-3-family">Claude-3-Opus-20240229 (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">79.42</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">87.39</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">56.15</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.37</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Anthropic</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">12</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.87</span></td>
    <td class="tg-p59o"><a href="https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo">GPT-4-0125-Preview (FC)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">77.02</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.3</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">74.03</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.37</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">OpenAI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">13</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.23</span></td>
    <td class="tg-p59o"><a href="https://huggingface.co/nvidia/nemotron-4-340b-instruct">Nemotron-4-340b-instruct (Prompt)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">76.67</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.38</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">84.1</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">78.05</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">NVIDIA</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">nvidia-open-model-license</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">14</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">80.21</span></td>
    <td class="tg-p59o"><a href="https://huggingface.co/meetkai/functionary-small-v3.1">Functionary-Small-v3.1 (FC)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">78.64</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">83.45</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">68.36</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.37</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">MeetKai</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">MIT</span></td>
  </tr>
  <tr>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">15</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">79.66</span></td>
    <td class="tg-p59o"><a href="https://mistral.ai/news/mistral-large-2407/">mistral-large-2407 (FC Any)</a></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">85.61</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">88.45</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">0.34</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">100</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Mistral</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">AI</span></td>
    <td class="tg-qai4"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#212529">Proprietary</span></td>
  </tr>
</tbody></table>

*Note: The rankings are based on the performance metrics provided.*   

2.In our evaluation, we assessed the function calling capabilities of various models, including our own fine-tuned models using both masked and non-masked approaches. Below are the results across several benchmarks, derived from evaluations performed in a zero-shot manner. Our model, **hammer-7b**, demonstrated superior performance compared to other models.

The table below replicates and extends the format found in ["Granite-Function Calling Model"](https://arxiv.org/abs/2407.00121), particularly Table 6: Function Calling Academic Benchmarks.

<style type="text/css">
.tg  {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  overflow:hidden;padding:12px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  font-weight:normal;overflow:hidden;padding:12px 5px;word-break:normal;}
.tg .tg-baqh{text-align:center;vertical-align:top}
.tg .tg-7geq{background-color:#ffffc7;text-align:center;vertical-align:top}
.tg .tg-k5c1{background-color:#ffffc7;font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-nrix{text-align:center;vertical-align:middle}
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
</style>
<table class="tg"><thead>
  <tr>
    <th class="tg-nrix" rowspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Model</span></th>
    <th class="tg-nrix" rowspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Size</span></th>
    <th class="tg-baqh" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">API-Bank</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">L-1</span></th>
    <th class="tg-baqh" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">API-Bank</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">L-2</span></th>
    <th class="tg-baqh" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Tool-Alpaca</span></th>
    <th class="tg-baqh" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Nexus</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Raven</span></th>
    <th class="tg-baqh" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Average</span></th>
  </tr>
  <tr>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Functionary-small-v2.4</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">78.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">70.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">54.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">45.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">88.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">47.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">82.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">64.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">75.50%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">56.50%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Gorilla-openfunctions-v2</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">43.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">41.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">12.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">12.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">69.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">39.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">81.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">65.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">51.20%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">39.30%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Hermes-2-Pro-Mistral</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">93.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">77.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">54.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">25.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">80.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">26.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">90.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">63.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">79.30%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">47.80%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Mistral-Instruct-v0.3</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">79.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">69.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">69.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">46.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">33.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">33.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">71.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">54.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">63.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">50.50%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">CodeGemma-Instruct</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">77.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">57.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">59.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">38.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">59.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">31.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">84.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">68.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">69.80%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">48.50%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Nexusflow-Raven-v2</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">13B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">51.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">42.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">28.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">22.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">85.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">37.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">92.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">75.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">64.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">44.00%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">C4AI-Command-R-v01</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">35B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">93.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">76.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">77.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">54.00%</span></td>
    <td class="tg-amwm"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">90.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">42.00%</span></td>
    <td class="tg-amwm"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">93.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">71.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">88.30%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">60.80%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Meta-Llama-3-70B-Instruct</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">70B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">85.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">67.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">69.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">52.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">78.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">43.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">70.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">52.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">75.50%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">53.50%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">GRANITE-20B-FUNCTIONCALLING</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">20B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">91.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">71.00%</span></td>
    <td class="tg-amwm"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">83.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">60.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">89.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">44.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">92.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">72.00%</span></td>
    <td class="tg-amwm"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">88.80%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">61.80%</span></td>
  </tr>
  <tr>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">xlam-7b-fc-r</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">90.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">80.70%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">68.90%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">60.70%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">67.30%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">59.00%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">54.10%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">57.50%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">70.10%</span></td>
    <td class="tg-baqh"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">64.50%</span></td>
  </tr>
  <tr>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Hammer-7b</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-k5c1"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">93.80%</span></td>
    <td class="tg-k5c1"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">85.90%</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">79.20%</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">64.40%</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">82.30%</span></td>
    <td class="tg-k5c1"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">59.90%</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">92.50%</span></td>
    <td class="tg-k5c1"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">77.40%</span></td>
    <td class="tg-7geq"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">86.90%</span></td>
    <td class="tg-k5c1"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">71.90%</span></td>
  </tr>
</tbody></table>

3.Finally, we evaluate the performance of our model on the [Seal-Tools](https://arxiv.org/abs/2405.08355) dataset, which also achieves better performance.
<style type="text/css">
.tg  {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  overflow:hidden;padding:12px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
  font-weight:normal;overflow:hidden;padding:12px 5px;word-break:normal;}
.tg .tg-9wq8{border-color:inherit;text-align:center;vertical-align:middle}
.tg .tg-c3ow{border-color:inherit;text-align:center;vertical-align:top}
.tg .tg-7btt{border-color:inherit;font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-mfhl{background-color:#ffffc7;border-color:inherit;text-align:center;vertical-align:top}
.tg .tg-py60{background-color:#ffffc7;border-color:inherit;font-weight:bold;text-align:center;vertical-align:top}
</style>
<table class="tg"><thead>
  <tr>
    <th class="tg-9wq8" rowspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Model</span></th>
    <th class="tg-9wq8" rowspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Size</span></th>
    <th class="tg-c3ow" colspan="2"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">SealTool(Single-Tool)</span></th>
  </tr>
  <tr>
    <th class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Func-Name</span></th>
    <th class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">F1</span> <span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Args</span></th>
  </tr></thead>
<tbody>
  <tr>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Gorilla-openfunctions-v2</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">93.20%</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">91.10%</span></td>
  </tr>
  <tr>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">GRANITE-20B-FUNCTIONCALLING</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">20B</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">94.90%</span></td>
    <td class="tg-7btt"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">92.70%</span></td>
  </tr>
  <tr>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">xlam-7b-fc-r</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">79.00%</span></td>
    <td class="tg-c3ow"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">76.90%</span></td>
  </tr>
  <tr>
    <td class="tg-mfhl"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">Hammer-7b</span></td>
    <td class="tg-mfhl"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">7B</span></td>
    <td class="tg-py60"><span style="font-weight:700;font-style:normal;text-decoration:none;color:#000">97.40%</span></td>
    <td class="tg-mfhl"><span style="font-weight:400;font-style:normal;text-decoration:none;color:#000">91.70%</span></td>
  </tr>
</tbody></table>

## Upcoming Developments

We are actively working on preparing smaller models derived from this architecture, which will be open-sourced soon.



## Example Usage
This is a simple example of how to use our model.
~~~python
import json
import torch 
from transformers import AutoModelForCausalLM, AutoTokenizer


model_name = "MadeAgents/Hammer-7b"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name) 

# Please use our provided instruction prompt for best performance
TASK_INSTRUCTION = """You are a tool calling assistant. In order to complete the user's request, you need to select one or more appropriate tools from the following tools and fill in the correct values for the tool parameters. Your specific tasks are:
1. Make one or more function/tool calls to meet the request based on the question.
2. If none of the function can be used, point it out and refuse to answer.
3. If the given question lacks the parameters required by the function, also point it out.
"""

FORMAT_INSTRUCTION = """
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please directly output an empty list '[]'
```
[
    {"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
    ... (more tool calls as required)
]
```
"""

# Define the input query and available tools
query = "Where can I find live giveaways for beta access and games? And what's the weather like in New York, US?" 




live_giveaways_by_type = {
    "name": "live_giveaways_by_type",
    "description": "Retrieve live giveaways from the GamerPower API based on the specified type.",
    "parameters": {
        "type": "object",
        "properties": {
            "type": {
                "type": "string",
                "description": "The type of giveaways to retrieve (e.g., game, loot, beta).",
                "default": "game"
            }
        },
        "required": ["type"]
    }
}
get_current_weather={
        "name": "get_current_weather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA"
                }
            },
            "required": ["location"]
        }
    }
get_stock_price={
        "name": "get_stock_price",
        "description": "Retrieves the current stock price for a given ticker symbol. The ticker symbol must be a valid symbol for a publicly traded company on a major US stock exchange like NYSE or NASDAQ. The tool will return the latest trade price in USD. It should be used when the user asks about the current or most recent price of a specific stock. It will not provide any other information about the stock or company.",
        "parameters": {
            "type": "object",
            "properties": {
                "ticker": {
                    "type": "string",
                    "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
                }
            },
            "required": ["ticker"]
        }
    }


def convert_to_format_tool(tools):
    ''''''
    if isinstance(tools, dict):
        format_tools = {
            "name": tools["name"],
            "description": tools["description"],
            "parameters": tools["parameters"].get("properties", {}),
        }
        required = tools["parameters"].get("required", [])
        for param in required:
            format_tools["parameters"][param]["required"] = True
        for param in format_tools["parameters"].keys():
            if "default" in format_tools["parameters"][param]:
                default = format_tools["parameters"][param]["default"]
                format_tools["parameters"][param]["description"]+=f"default is \'{default}\'"
        return format_tools
    elif isinstance(tools, list):
        return [convert_to_format_tool(tool) for tool in tools]
    else:
        return tools
# Helper function to build the input prompt for our model
def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str):
    prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{json.dumps(tools)}\n[END OF AVAILABLE TOOLS]\n\n"
    prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
    prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
    return prompt
   
# Build the input and start the inference
openai_format_tools = [live_giveaways_by_type, get_current_weather,get_stock_price]
format_tools = convert_to_format_tool(openai_format_tools)
content = build_prompt(TASK_INSTRUCTION, FORMAT_INSTRUCTION, format_tools, query)

messages=[
    { 'role': 'user', 'content': content}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
~~~



---
## References
- 1.Yan F, Mao H, Ji C C-J, et al. Berkeley Function Calling Leaderboard.

- 2. Abdelaziz I, Basu K, Agarwal M, et al. Granite-Function Calling Model: Introducing Function Calling Abilities via Multi-task Learning of Granular Tasks[J]. arXiv preprint arXiv:2407.00121, 2024.

- 3. Wu M, Zhu T, Han H, et al. Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark[J]. arXiv preprint arXiv:2405.08355, 2024.


Feel free to reach out for further clarifications or contributions!