--- language: - zh - en tags: - similarity - antonym - synonym --- # near-synonym >>> near-synonym, 中文反义词/近义词(antonym/synonym)工具包. # 一、安装 ``` 0. 注意事项 默认不指定numpy版本(标准版numpy==1.20.4) 标准版本的依赖包详见 requirements-all.txt 1. 通过PyPI安装 pip install near-synonym 使用镜像源, 如: pip install -i https://pypi.tuna.tsinghua.edu.cn/simple near-synonym ``` # 二、使用方式 ## 2.1 快速使用, 反义词, 近义词 ```python3 import near_synonym word = "喜欢" word_antonyms = near_synonym.antonyms(word) word_synonyms = near_synonym.synonyms(word) print("反义词:") print(word_antonyms) print("近义词:") print(word_synonyms) """ 反义词: [('讨厌', 0.6954), ('不爱', 0.6714), ('偏爱', 0.6676), ('太爱', 0.6472), ('花心', 0.6421), ('在乎', 0.6395), ('好感', 0.6378), ('酷爱', 0.634)] 近义词: [('最爱', 0.84), ('爱好', 0.8274), ('超爱', 0.8213), ('爱上', 0.8107), ('爱玩', 0.8039), ('狂爱', 0.798), ('大胆', 0.7852), ('喜欢上', 0.7826)] 请输入word: """ ``` ## 2.2 详细使用 ```python3 import near_synonym word = "喜欢" word_antonyms = near_synonym.antonyms(word, topk=8, annk=256, annk_cpu=128, batch_size=32, rate_ann=0.4, rate_sim=0.4, rate_len=0.2, rounded=4, is_debug=False) print("反义词:") print(word_antonyms) # 速度很慢, 召回数量annk_cpu/annk可以调小 ``` # 三、技术原理 ## 3.1 技术详情 ``` near-synonym, 中文反义词/近义词工具包. 流程: Word2vec -> ANN -> NLI -> Length # Word2vec, 词向量, 使用skip-ngram的词向量; # ANN, 近邻搜索, 使用annoy检索召回; # NLI, 自然语言推断, 使用Roformer-sim的v2版本, 区分反义词/近义词; # Length, 惩罚项, 词语的文本长度惩罚; ``` ## 3.2 TODO ``` 1. 使用大模型构建语料, 训练小的NLI模型, 替换roformer-sim-ft. ``` # 四、对比 ## 4.1 相似度比较 | 词语 | 2016词林改进版 | 知网hownet | Synonyms | near-synonym | |--------------|-----------------|---------------|-----------------| ----------------- | | "轿车","汽车" | 0.82 | 1.0 | 0.73 | 0.86 | | "宝石","宝物" | 0.83 | 0.17 | 0.71 | 0.81 | | "旅游","游历" | 1.0 | 1.0 | 0.59 | 0.72 | | "男孩子","小伙子" | 0.81 | 1.0 | 0.88 | 0.83 | | "海岸","海滨" | 0.94 | 1.0 | 0.68 | 0.9 | | "庇护所","精神病院" | 0.96 | 0.58 | 0.64 | 0.62 | | "魔术师","巫师" | 0.85 | 0.58 | 0.66 | 0.78 | | "火炉","炉灶" | 1.0 | 1.0 | 0.81 | 0.83 | | "中午","正午" | 0.98 | 0.58 | 0.85 | 0.88 | | "食物","水果" | 0.35 | 0.14 | 0.74 | 0.82 | | "鸟","公鸡" | 0.64 | 1.0 | 0.67 | 0.72 | | "鸟","鹤" | 0.1 | 1.0 | 0.64 | 0.81 | | "工具","器械" | 0.53 | 1.0 | 0.62 | 0.75 | | "兄弟","和尚" | 0.37 | 0.80 | 0.59 | 0.7 | | "起重机","器械" | 0.53 | 0.35 | 0.61 | 0.65 | 注:2016词林改进版/知网hownet/Synonyms数据、分数来源于[chatopera/Synonyms](https://github.com/chatopera/Synonyms)。同义词林及知网数据、分数的次级来源为[liuhuanyong/SentenceSimilarity](https://github.com/liuhuanyong/SentenceSimilarity)。 # 五、参考 - [https://ai.tencent.com/ailab/nlp/en/index.html](https://ai.tencent.com/ailab/nlp/en/index.html) - [https://github.com/ZhuiyiTechnology/roformer-sim](https://github.com/ZhuiyiTechnology/roformer-sim) - [https://github.com/liuhuanyong/SentenceSimilarity](https://github.com/liuhuanyong/SentenceSimilarity) - [https://github.com/yongzhuo/Macropodus](https://github.com/yongzhuo/Macropodus) - [https://github.com/chatopera/Synonyms](https://github.com/chatopera/Synonyms) # Reference For citing this work, you can refer to the present GitHub project. For example, with BibTeX: ``` @misc{Macropodus, howpublished = {https://github.com/yongzhuo/near-synonym}, title = {near-synonym}, author = {Yongzhuo Mo}, publisher = {GitHub}, year = {2024} } ```