Macropodus
commited on
Commit
·
8fbc569
1
Parent(s):
67ca627
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-4.0
|
3 |
---
|
|
|
1 |
+
# chatglm-maths
|
2 |
+
chatglm-6b微调/LORA/PPO/推理, 样本为自动生成的整数/小数加减乘除运算, 可gpu/cpu
|
3 |
+
|
4 |
+
## 踩坑
|
5 |
+
```python
|
6 |
+
1. eps=1e-5(不要改小), 半精度float16, 以及LN采用的是Post-LN(泛化性更好) + DeepNorm, 【害, Attention前也有LN】目的是大模型为了防止梯度溢出等;
|
7 |
+
2. 模型输入输出, 默认的tokenization_chatglm.py/modeling_chatglm.py不能用, 因为那是完全为生成generate设置的, 需要自己写好所有缩入参数, 或者机子改成适配的;
|
8 |
+
2.1 ChatGLMModel中, get_masks()正常, get_position_ids()函数中‘context_length = seq.index(150004) + 1’ 改为 ‘context_length = len(seq)’;
|
9 |
+
2.2 训练输入input_ids格式暂定为(训练后post-padding, 推理前pre-padding[tokenization_chatglm.py默认pre-padding])
|
10 |
+
x: prompt_1 + "_" + text_1 + "\n" + prompt_2 + [gMASK] + [BOS] + "_" + text_2 + [PAD]*N
|
11 |
+
2.3 训练输入label_ids格式暂定为(CrossEntropyLoss默认忽略-100不参与计算loss)
|
12 |
+
y = [-100]*len(text_1) + [BOS] + text_2 + [EOS] + [-100]*N
|
13 |
+
2.4 注意position/mask(自带的只是推理用的batch_size=1, 所以训练输入还得自己写), 可参考GLM-130的README.md, huozhe 查看GLM-1源码https://github.com/THUDM/GLM/blob/main/tasks/seq2seq/dataset.py
|
14 |
+
3. 注意chatglm-6b权重是float16的, 不过计算loss时候会转成float32计算, 最后loss再转回float16更新梯度;
|
15 |
+
4. ChatGLMTokenizer有时候会报奇奇怪怪的错误, 建议生成时候设置max_new_tokens, 最大{"max_new_tokens": 2048}; decode有时候会出现不存在id;
|
16 |
+
5. 低秩自适应LORA, RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
|
17 |
+
尝试 transformers升级到最新, get_peft_model后再.cuda(), device_map={'':torch.cuda.current_device()},
|
18 |
+
```
|
19 |
+
|
20 |
+
## 微调数据
|
21 |
+
1. 原始数据来自[https://github.com/LYH-YF/MWPToolkit](https://github.com/LYH-YF/MWPToolkit)
|
22 |
+
|
23 |
+
处理后的微调数据(算式/解方程)-MWP: [https://huggingface.co/datasets/Macropodus/MWP-Instruct](https://huggingface.co/datasets/Macropodus/MWP-Instruct)
|
24 |
+
|
25 |
+
3. 大数加减乘除来自: [https://github.com/liutiedong/goat.git ](https://github.com/liutiedong/goat.git )
|
26 |
+
|
27 |
+
|
28 |
+
## LoRA权重
|
29 |
+
```shell
|
30 |
+
Baichuan-7B-GPT4ForALL: https://huggingface.co/Macropodus/MWP-Instruct
|
31 |
+
Bloomz-7B-GPT4ForALL: https://huggingface.co/Macropodus/MWP-Instruct
|
32 |
+
ChatGLM-6B-GPT4ForALL: https://huggingface.co/Macropodus/MWP-Instruct
|
33 |
+
LlaMA-7B-GPT4ForALL: https://huggingface.co/Macropodus/MWP-Instruct
|
34 |
+
ChatGLM-6B-MWP: https://huggingface.co/Macropodus/MWP-Instruct
|
35 |
+
```
|
36 |
+
|
37 |
+
## 数据集-中文
|
38 |
+
- [https://github.com/tatsu-lab/stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
39 |
+
- [https://github.com/LianjiaTech/BELLE](https://github.com/LianjiaTech/BELLE)
|
40 |
+
- [https://github.com/carbonz0/alpaca-chinese-dataset](https://github.com/carbonz0/alpaca-chinese-dataset)
|
41 |
+
|
42 |
+
|
43 |
+
## 环境配置
|
44 |
+
```shell
|
45 |
+
transformers>=4.26.1
|
46 |
+
cpm_kernels==1.0.11
|
47 |
+
icetk==0.0.4
|
48 |
+
torch>=1.10.1
|
49 |
+
rouge==1.0.1
|
50 |
+
nltk==3.6.6
|
51 |
+
peft>=0.2.0
|
52 |
+
numpy
|
53 |
+
tqdm
|
54 |
+
|
55 |
+
lion_pytorch
|
56 |
+
macropodus
|
57 |
+
trl>=0.4.1
|
58 |
+
```
|
59 |
+
|
60 |
+
## 微调-计算题
|
61 |
+
```shell
|
62 |
+
lora
|
63 |
+
微调: python c00_toy_lora_train_6b.py
|
64 |
+
推理: python p00_toy_lora_predict_6b.py
|
65 |
+
|
66 |
+
ppo
|
67 |
+
训练: python t10_toy_trl_train_ppo.py
|
68 |
+
测试: python t10_toy_trl_predict_ppo.py
|
69 |
+
|
70 |
+
6b
|
71 |
+
微调: python c00_toy_cpu_train_6b.py
|
72 |
+
推理: python p00_toy_cpu_predit_6b.py
|
73 |
+
|
74 |
+
small-layer
|
75 |
+
微调: python c01_toy_cpu_train_small.py
|
76 |
+
推理: python p01_toy_cpu_predict_small.py
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## 参考/感谢
|
81 |
+
- [https://github.com/THUDM/ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B)
|
82 |
+
- [https://github.com/THUDM/GLM](https://github.com/THUDM/GLM)
|
83 |
+
- [https://github.com/tatsu-lab/stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
84 |
+
- [https://github.com/LianjiaTech/BELLE](https://github.com/LianjiaTech/BELLE)
|
85 |
+
- [https://github.com/huggingface/peft](https://github.com/huggingface/peft)
|
86 |
+
- [https://github.com/mymusise/ChatGLM-Tuning](https://github.com/mymusise/ChatGLM-Tuning)
|
87 |
+
- [https://github.com/bojone/bert4keras](https://github.com/bojone/bert4keras)
|
88 |
+
- [trl](https://github.com/lvwerra/trl)
|
89 |
+
- [math23k](https://aclanthology.org/D17-1088)
|
90 |
+
|
91 |
+
## 推理日志toy
|
92 |
+
```cpu
|
93 |
+
generator_calculate_line: ('13+75=', '13+75=88')
|
94 |
+
tokenizer.vocab_size: 150344
|
95 |
+
eval: 0%| | 0/1 [00:00<?, ?it/s]batch_query: ['简便运算: 98+83= 剖析: 98+83=181']
|
96 |
+
batch_qtext_0: 简便运算: 98+83= 剖析:
|
97 |
+
batch_qans_0: 98+83=181
|
98 |
+
response_0: 98+83=171
|
99 |
+
{'rouge-1': 0.0, 'rouge-2': 0.0, 'rouge-l': 0.0, 'bleu': 0.0}
|
100 |
+
请输入:
|
101 |
+
25.31+86.35=
|
102 |
+
请稍等...
|
103 |
+
25.31+86.35=101.66
|
104 |
+
```
|
105 |
+
|
106 |
+
|
107 |
+
## 微调日志toy
|
108 |
+
```cpu
|
109 |
+
generator_calculate_line: ('13+75=', '13+75=88')
|
110 |
+
tokenizer.vocab_size: 150344
|
111 |
+
Loading checkpoint shards: 100%|██████████████████████████████████████████���███████████████████████████████████████████████████████████████████████████████████████████████████| 8/8 [00:10<00:00, 1.31s/it]
|
112 |
+
transformer.word_embeddings.weight False
|
113 |
+
......
|
114 |
+
transformer.layers.26.mlp.dense_4h_to_h.bias False
|
115 |
+
transformer.layers.27.input_layernorm.weight True
|
116 |
+
transformer.layers.27.input_layernorm.bias True
|
117 |
+
transformer.layers.27.attention.query_key_value.weight True
|
118 |
+
transformer.layers.27.attention.query_key_value.bias True
|
119 |
+
transformer.layers.27.attention.dense.weight True
|
120 |
+
transformer.layers.27.attention.dense.bias True
|
121 |
+
transformer.layers.27.post_attention_layernorm.weight True
|
122 |
+
transformer.layers.27.post_attention_layernorm.bias True
|
123 |
+
transformer.layers.27.mlp.dense_h_to_4h.weight True
|
124 |
+
transformer.layers.27.mlp.dense_h_to_4h.bias True
|
125 |
+
transformer.layers.27.mlp.dense_4h_to_h.weight True
|
126 |
+
transformer.layers.27.mlp.dense_4h_to_h.bias True
|
127 |
+
transformer.final_layernorm.weight True
|
128 |
+
transformer.final_layernorm.bias True
|
129 |
+
model.chat start
|
130 |
+
13+75=88, but that's not the correct answer. The correct answer is 13+75=88, which is 90.
|
131 |
+
/anaconda3/envs/py371/lib/python3.7/site-packages/transformers/optimization.py:395: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
|
132 |
+
FutureWarning,
|
133 |
+
epoch: 0%|
|
134 |
+
|
135 |
+
|
136 |
---
|
137 |
license: cc-by-nc-4.0
|
138 |
---
|