Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-to-text
|
| 4 |
+
- image-captioning
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
language:
|
| 7 |
+
- zh
|
| 8 |
+
widget:
|
| 9 |
+
- src: https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E5%B0%8F%E8%80%B3%E9%92%89.jpg
|
| 10 |
+
example_title: 小耳钉
|
| 11 |
+
- src: https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E5%8D%AB%E8%A1%A3.jpg
|
| 12 |
+
example_title: 卫衣
|
| 13 |
+
- src: https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E9%AB%98%E8%B7%9F%E9%9E%8B.jpg
|
| 14 |
+
example_title: 高跟鞋
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
### 功能介绍
|
| 18 |
+
|
| 19 |
+
该模型功能主要是对图片生成文字描述。模型结构使用Encoder-Decoder结构,其中Encoder端使用BEiT模型,Decoder使用GPT模型。
|
| 20 |
+
|
| 21 |
+
使用中文Muge数据集训练语料,训练5k步,最终验证集loss为0.3737,rouge1为20.419,rouge2为7.3553,rougeL为17.3753,rougeLsum为17.376。
|
| 22 |
+
|
| 23 |
+
[Github项目地址](https://github.com/Macielyoung/Chinese-Image-Caption)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
### 如何使用
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
| 31 |
+
from PIL import Image
|
| 32 |
+
|
| 33 |
+
pretrained = "Maciel/Muge-Image-Caption"
|
| 34 |
+
model = VisionEncoderDecoderModel.from_pretrained(pretrained)
|
| 35 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(pretrained)
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained)
|
| 37 |
+
|
| 38 |
+
image_path = "https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E9%AB%98%E8%B7%9F%E9%9E%8B.jpg"
|
| 39 |
+
image = Image.open(image_path)
|
| 40 |
+
if image.mode != "RGB":
|
| 41 |
+
image = image.convert("RGB")
|
| 42 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
| 43 |
+
|
| 44 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
| 45 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 46 |
+
preds = [pred.strip() for pred in preds]
|
| 47 |
+
print(preds)
|
| 48 |
+
```
|