Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# GaroVec v1.0 — Hybrid English↔Garo Embeddings
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
**GaroVec v1.0** is the *first publicly documented Latin-script Garo embedding model*.
|
| 5 |
+
It combines:
|
| 6 |
+
- **FastText embeddings** (English + Garo)
|
| 7 |
+
- **Cross-lingual alignment** using Procrustes rotation
|
| 8 |
+
- **Frequency-based bilingual dictionary** for high-confidence word translations
|
| 9 |
+
|
| 10 |
+
This hybrid design provides both **semantic embeddings** and **direct dictionary lookups**, making it useful for cross-lingual tasks like translation support, lexicon building, and low-resource NLP research.
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
## Training
|
| 15 |
+
- **Data size**: ~2,500 English ↔ Garo parallel sentences
|
| 16 |
+
(synthetic English generated with open models, manually translated by native Garo speakers)
|
| 17 |
+
- **Method**:
|
| 18 |
+
- FastText skipgram (300-dimensional vectors, char n-grams 3–6, 25 epochs)
|
| 19 |
+
- Linear alignment (Procrustes) between English and Garo vector spaces
|
| 20 |
+
- Frequency-based dictionary extracted from the parallel corpus
|
| 21 |
+
- **Artifacts**:
|
| 22 |
+
- `garovec_garo.bin` — Garo FastText embeddings
|
| 23 |
+
- `garovec_english.bin` — English FastText embeddings
|
| 24 |
+
- `garovec_alignment_matrix.npy` — alignment matrix
|
| 25 |
+
- `garovec_model.pkl` — final hybrid model with dictionary + embeddings
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
import pickle
|
| 33 |
+
import fasttext
|
| 34 |
+
import numpy as np
|
| 35 |
+
|
| 36 |
+
# Load hybrid model data
|
| 37 |
+
with open("garovec_model.pkl", "rb") as f:
|
| 38 |
+
garovec_data = pickle.load(f)
|
| 39 |
+
|
| 40 |
+
# Load embeddings
|
| 41 |
+
garo_model = fasttext.load_model("garovec_garo.bin")
|
| 42 |
+
english_model = fasttext.load_model("garovec_english.bin")
|
| 43 |
+
W = np.load("garovec_alignment_matrix.npy")
|
| 44 |
+
|
| 45 |
+
# Example: get nearest Garo words for English word
|
| 46 |
+
vec = english_model.get_word_vector("love")
|
| 47 |
+
aligned_vec = vec @ W
|
| 48 |
+
candidates = [garo_model.get_word_vector(w) for w in garo_model.words[:100]]
|