project-monai commited on
Commit
d774d8b
·
verified ·
1 Parent(s): d8c6f9d

Upload wholeBody_ct_segmentation version 0.2.6

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
configs/evaluate.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "validate#postprocessing": {
3
+ "_target_": "Compose",
4
+ "transforms": [
5
+ {
6
+ "_target_": "Activationsd",
7
+ "keys": "pred",
8
+ "softmax": true
9
+ },
10
+ {
11
+ "_target_": "Invertd",
12
+ "keys": [
13
+ "pred",
14
+ "label"
15
+ ],
16
+ "transform": "@validate#preprocessing",
17
+ "orig_keys": "image",
18
+ "meta_key_postfix": "meta_dict",
19
+ "nearest_interp": [
20
+ true,
21
+ true
22
+ ],
23
+ "to_tensor": true
24
+ },
25
+ {
26
+ "_target_": "AsDiscreted",
27
+ "keys": [
28
+ "pred",
29
+ "label"
30
+ ],
31
+ "argmax": [
32
+ true,
33
+ false
34
+ ],
35
+ "to_onehot": 105
36
+ },
37
+ {
38
+ "_target_": "SaveImaged",
39
+ "_disabled_": true,
40
+ "keys": "pred",
41
+ "meta_keys": "pred_meta_dict",
42
+ "output_dir": "@output_dir",
43
+ "resample": false,
44
+ "squeeze_end_dims": true
45
+ }
46
+ ]
47
+ },
48
+ "validate#handlers": [
49
+ {
50
+ "_target_": "CheckpointLoader",
51
+ "load_path": "$@ckpt_dir + '/model.pt'",
52
+ "load_dict": {
53
+ "model": "@network"
54
+ }
55
+ },
56
+ {
57
+ "_target_": "StatsHandler",
58
+ "iteration_log": false
59
+ },
60
+ {
61
+ "_target_": "MetricsSaver",
62
+ "save_dir": "@output_dir",
63
+ "metrics": [
64
+ "val_mean_dice",
65
+ "val_acc"
66
+ ],
67
+ "metric_details": [
68
+ "val_mean_dice"
69
+ ],
70
+ "batch_transform": "$lambda x: [xx['image'].meta for xx in x]",
71
+ "summary_ops": "*"
72
+ }
73
+ ],
74
+ "initialize": [
75
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
76
+ ],
77
+ "run": [
78
+ "$@validate#evaluator.run()"
79
+ ]
80
+ }
configs/inference.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "displayable_configs": {
3
+ "highres": true,
4
+ "sw_overlap": 0.25,
5
+ "sw_batch_size": 1
6
+ },
7
+ "imports": [
8
+ "$import glob",
9
+ "$import numpy",
10
+ "$import os"
11
+ ],
12
+ "bundle_root": ".",
13
+ "image_key": "image",
14
+ "output_dir": "$@bundle_root + '/eval'",
15
+ "output_ext": ".nii.gz",
16
+ "output_dtype": "$numpy.float32",
17
+ "output_postfix": "trans",
18
+ "separate_folder": true,
19
+ "load_pretrain": true,
20
+ "dataset_dir": "sampledata",
21
+ "datalist": "$list(sorted(glob.glob(@dataset_dir + '/imagesTs/*.nii.gz')))",
22
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
23
+ "pixdim": "$[1.5, 1.5, 1.5] if @displayable_configs#highres else [3.0, 3.0, 3.0]",
24
+ "modelname": "$'model.pt' if @displayable_configs#highres else 'model_lowres.pt'",
25
+ "network_def": {
26
+ "_target_": "SegResNet",
27
+ "spatial_dims": 3,
28
+ "in_channels": 1,
29
+ "out_channels": 105,
30
+ "init_filters": 32,
31
+ "blocks_down": [
32
+ 1,
33
+ 2,
34
+ 2,
35
+ 4
36
+ ],
37
+ "blocks_up": [
38
+ 1,
39
+ 1,
40
+ 1
41
+ ],
42
+ "dropout_prob": 0.2
43
+ },
44
+ "network": "$@network_def.to(@device)",
45
+ "preprocessing": {
46
+ "_target_": "Compose",
47
+ "transforms": [
48
+ {
49
+ "_target_": "LoadImaged",
50
+ "keys": "@image_key"
51
+ },
52
+ {
53
+ "_target_": "EnsureTyped",
54
+ "keys": "@image_key"
55
+ },
56
+ {
57
+ "_target_": "EnsureChannelFirstd",
58
+ "keys": "@image_key"
59
+ },
60
+ {
61
+ "_target_": "Orientationd",
62
+ "keys": "@image_key",
63
+ "axcodes": "RAS"
64
+ },
65
+ {
66
+ "_target_": "Spacingd",
67
+ "keys": "@image_key",
68
+ "pixdim": "@pixdim",
69
+ "mode": "bilinear"
70
+ },
71
+ {
72
+ "_target_": "NormalizeIntensityd",
73
+ "keys": "@image_key",
74
+ "nonzero": true
75
+ },
76
+ {
77
+ "_target_": "ScaleIntensityd",
78
+ "keys": "@image_key",
79
+ "minv": -1.0,
80
+ "maxv": 1.0
81
+ }
82
+ ]
83
+ },
84
+ "dataset": {
85
+ "_target_": "Dataset",
86
+ "data": "$[{'image': i} for i in @datalist]",
87
+ "transform": "@preprocessing"
88
+ },
89
+ "dataloader": {
90
+ "_target_": "DataLoader",
91
+ "dataset": "@dataset",
92
+ "batch_size": 1,
93
+ "shuffle": false,
94
+ "num_workers": 1
95
+ },
96
+ "inferer": {
97
+ "_target_": "SlidingWindowInferer",
98
+ "roi_size": [
99
+ 96,
100
+ 96,
101
+ 96
102
+ ],
103
+ "sw_batch_size": "@displayable_configs#sw_batch_size",
104
+ "overlap": "@displayable_configs#sw_overlap",
105
+ "padding_mode": "replicate",
106
+ "mode": "gaussian",
107
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"
108
+ },
109
+ "postprocessing": {
110
+ "_target_": "Compose",
111
+ "transforms": [
112
+ {
113
+ "_target_": "Activationsd",
114
+ "keys": "pred",
115
+ "softmax": true
116
+ },
117
+ {
118
+ "_target_": "AsDiscreted",
119
+ "keys": "pred",
120
+ "argmax": true
121
+ },
122
+ {
123
+ "_target_": "Invertd",
124
+ "keys": "pred",
125
+ "transform": "@preprocessing",
126
+ "orig_keys": "@image_key",
127
+ "nearest_interp": true,
128
+ "to_tensor": true
129
+ },
130
+ {
131
+ "_target_": "SaveImaged",
132
+ "keys": "pred",
133
+ "output_dir": "@output_dir",
134
+ "output_ext": "@output_ext",
135
+ "output_dtype": "@output_dtype",
136
+ "output_postfix": "@output_postfix",
137
+ "separate_folder": "@separate_folder"
138
+ }
139
+ ]
140
+ },
141
+ "handlers": [
142
+ {
143
+ "_target_": "StatsHandler",
144
+ "iteration_log": false
145
+ }
146
+ ],
147
+ "evaluator": {
148
+ "_target_": "SupervisedEvaluator",
149
+ "device": "@device",
150
+ "val_data_loader": "@dataloader",
151
+ "network": "@network",
152
+ "inferer": "@inferer",
153
+ "postprocessing": "@postprocessing",
154
+ "val_handlers": "@handlers",
155
+ "amp": true
156
+ },
157
+ "checkpointloader": {
158
+ "_target_": "CheckpointLoader",
159
+ "load_path": "$@bundle_root + '/models/' + @modelname",
160
+ "load_dict": {
161
+ "model": "@network"
162
+ }
163
+ },
164
+ "initialize": [
165
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
166
+ "$@checkpointloader(@evaluator) if @load_pretrain else None"
167
+ ],
168
+ "run": [
169
170
+ ]
171
+ }
configs/inference_trt.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os",
5
+ "$import torch_tensorrt"
6
+ ],
7
+ "network_def": "$torch.jit.load(@bundle_root + '/models/model_trt.ts')",
8
+ "evaluator#amp": false,
9
+ "initialize": [
10
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
11
+ ]
12
+ }
configs/logging.conf ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [loggers]
2
+ keys=root
3
+
4
+ [handlers]
5
+ keys=consoleHandler
6
+
7
+ [formatters]
8
+ keys=fullFormatter
9
+
10
+ [logger_root]
11
+ level=INFO
12
+ handlers=consoleHandler
13
+
14
+ [handler_consoleHandler]
15
+ class=StreamHandler
16
+ level=INFO
17
+ formatter=fullFormatter
18
+ args=(sys.stdout,)
19
+
20
+ [formatter_fullFormatter]
21
+ format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
configs/metadata.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
+ "version": "0.2.6",
4
+ "changelog": {
5
+ "0.2.6": "update to huggingface hosting",
6
+ "0.2.5": "use monai 1.4 and update large files",
7
+ "0.2.4": "update to use monai 1.3.1",
8
+ "0.2.3": "add load_pretrain flag for infer",
9
+ "0.2.2": "add checkpoint loader for infer",
10
+ "0.2.1": "remove meta_dict usage",
11
+ "0.2.0": "add support for TensorRT conversion and inference",
12
+ "0.1.9": "fix the wrong GPU index issue of multi-node",
13
+ "0.1.8": "Update evalaute doc, GPU usage details, and dataset preparation instructions",
14
+ "0.1.7": "remove error dollar symbol in readme",
15
+ "0.1.6": "add RAM usage with CacheDataset and GPU consumtion warning",
16
+ "0.1.5": "fix mgpu finalize issue",
17
+ "0.1.4": "Update README Formatting",
18
+ "0.1.3": "add non-deterministic note",
19
+ "0.1.2": "Update figure with links",
20
+ "0.1.1": "adapt to BundleWorkflow interface and val metric",
21
+ "0.1.0": "complete the model package",
22
+ "0.0.1": "initialize the model package structure"
23
+ },
24
+ "monai_version": "1.4.0",
25
+ "pytorch_version": "2.4.0",
26
+ "numpy_version": "1.24.4",
27
+ "required_packages_version": {
28
+ "itk": "5.4.0",
29
+ "nibabel": "5.2.1",
30
+ "pytorch-ignite": "0.4.11",
31
+ "tensorboard": "2.17.0"
32
+ },
33
+ "supported_apps": {},
34
+ "name": "Whole body CT segmentation",
35
+ "task": "TotalSegmentator Segmentation",
36
+ "description": "A pre-trained SegResNet model for volumetric (3D) segmentation of the 104 whole body segments",
37
+ "authors": "MONAI team",
38
+ "copyright": "Copyright (c) MONAI Consortium",
39
+ "data_source": "TotalSegmentator",
40
+ "data_type": "nibabel",
41
+ "image_classes": "104 foreground channels, 0 channel for the background, intensity scaled to [0, 1]",
42
+ "label_classes": "0 is the background, others are whole body segments",
43
+ "pred_classes": "0 is the background, 104 other chanels are whole body segments",
44
+ "eval_metrics": {
45
+ "mean_dice": 0.8
46
+ },
47
+ "intended_use": "This is an example, not to be used for diagnostic purposes",
48
+ "references": [
49
+ "Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S. and Segeroth, M., 2022. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868.",
50
+ "Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y. and Xu, D., 2022. Automated head and neck tumor segmentation from 3D PET/CT. arXiv preprint arXiv:2209.10809.",
51
+ "Tang, Y., Gao, R., Lee, H.H., Han, S., Chen, Y., Gao, D., Nath, V., Bermudez, C., Savona, M.R., Abramson, R.G. and Bao, S., 2021. High-resolution 3D abdominal segmentation with random patch network fusion. Medical image analysis, 69, p.101894."
52
+ ],
53
+ "network_data_format": {
54
+ "inputs": {
55
+ "image": {
56
+ "type": "image",
57
+ "format": "hounsfield",
58
+ "modality": "CT",
59
+ "num_channels": 1,
60
+ "spatial_shape": [
61
+ 96,
62
+ 96,
63
+ 96
64
+ ],
65
+ "dtype": "float32",
66
+ "value_range": [
67
+ 0,
68
+ 1
69
+ ],
70
+ "is_patch_data": true,
71
+ "channel_def": {
72
+ "0": "image"
73
+ }
74
+ }
75
+ },
76
+ "outputs": {
77
+ "pred": {
78
+ "type": "image",
79
+ "format": "segmentation",
80
+ "num_channels": 105,
81
+ "spatial_shape": [
82
+ 96,
83
+ 96,
84
+ 96
85
+ ],
86
+ "dtype": "float32",
87
+ "value_range": [
88
+ 0,
89
+ 104
90
+ ],
91
+ "is_patch_data": true,
92
+ "channel_def": {
93
+ "0": "background",
94
+ "1": "spleen",
95
+ "2": "kidney_right",
96
+ "3": "kidney_left",
97
+ "4": "gallbladder",
98
+ "5": "liver",
99
+ "6": "stomach",
100
+ "7": "aorta",
101
+ "8": "inferior_vena_cava",
102
+ "9": "portal_vein_and_splenic_vein",
103
+ "10": "pancreas",
104
+ "11": "adrenal_gland_right",
105
+ "12": "adrenal_gland_left",
106
+ "13": "lung_upper_lobe_left",
107
+ "14": "lung_lower_lobe_left",
108
+ "15": "lung_upper_lobe_right",
109
+ "16": "lung_middle_lobe_right",
110
+ "17": "lung_lower_lobe_right",
111
+ "18": "vertebrae_L5",
112
+ "19": "vertebrae_L4",
113
+ "20": "vertebrae_L3",
114
+ "21": "vertebrae_L2",
115
+ "22": "vertebrae_L1",
116
+ "23": "vertebrae_T12",
117
+ "24": "vertebrae_T11",
118
+ "25": "vertebrae_T10",
119
+ "26": "vertebrae_T9",
120
+ "27": "vertebrae_T8",
121
+ "28": "vertebrae_T7",
122
+ "29": "vertebrae_T6",
123
+ "30": "vertebrae_T5",
124
+ "31": "vertebrae_T4",
125
+ "32": "vertebrae_T3",
126
+ "33": "vertebrae_T2",
127
+ "34": "vertebrae_T1",
128
+ "35": "vertebrae_C7",
129
+ "36": "vertebrae_C6",
130
+ "37": "vertebrae_C5",
131
+ "38": "vertebrae_C4",
132
+ "39": "vertebrae_C3",
133
+ "40": "vertebrae_C2",
134
+ "41": "vertebrae_C1",
135
+ "42": "esophagus",
136
+ "43": "trachea",
137
+ "44": "heart_myocardium",
138
+ "45": "heart_atrium_left",
139
+ "46": "heart_ventricle_left",
140
+ "47": "heart_atrium_right",
141
+ "48": "heart_ventricle_right",
142
+ "49": "pulmonary_artery",
143
+ "50": "brain",
144
+ "51": "iliac_artery_left",
145
+ "52": "iliac_artery_right",
146
+ "53": "iliac_vena_left",
147
+ "54": "iliac_vena_right",
148
+ "55": "small_bowel",
149
+ "56": "duodenum",
150
+ "57": "colon",
151
+ "58": "rib_left_1",
152
+ "59": "rib_left_2",
153
+ "60": "rib_left_3",
154
+ "61": "rib_left_4",
155
+ "62": "rib_left_5",
156
+ "63": "rib_left_6",
157
+ "64": "rib_left_7",
158
+ "65": "rib_left_8",
159
+ "66": "rib_left_9",
160
+ "67": "rib_left_10",
161
+ "68": "rib_left_11",
162
+ "69": "rib_left_12",
163
+ "70": "rib_right_1",
164
+ "71": "rib_right_2",
165
+ "72": "rib_right_3",
166
+ "73": "rib_right_4",
167
+ "74": "rib_right_5",
168
+ "75": "rib_right_6",
169
+ "76": "rib_right_7",
170
+ "77": "rib_right_8",
171
+ "78": "rib_right_9",
172
+ "79": "rib_right_10",
173
+ "80": "rib_right_11",
174
+ "81": "rib_right_12",
175
+ "82": "humerus_left",
176
+ "83": "humerus_right",
177
+ "84": "scapula_left",
178
+ "85": "scapula_right",
179
+ "86": "clavicula_left",
180
+ "87": "clavicula_right",
181
+ "88": "femur_left",
182
+ "89": "femur_right",
183
+ "90": "hip_left",
184
+ "91": "hip_right",
185
+ "92": "sacrum",
186
+ "93": "face",
187
+ "94": "gluteus_maximus_left",
188
+ "95": "gluteus_maximus_right",
189
+ "96": "gluteus_medius_left",
190
+ "97": "gluteus_medius_right",
191
+ "98": "gluteus_minimus_left",
192
+ "99": "gluteus_minimus_right",
193
+ "100": "autochthon_left",
194
+ "101": "autochthon_right",
195
+ "102": "iliopsoas_left",
196
+ "103": "iliopsoas_right",
197
+ "104": "urinary_bladder"
198
+ }
199
+ }
200
+ }
201
+ }
202
+ }
configs/multi_gpu_evaluate.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "device": "$torch.device('cuda:' + os.environ['LOCAL_RANK'])",
3
+ "network": {
4
+ "_target_": "torch.nn.parallel.DistributedDataParallel",
5
+ "module": "$@network_def.to(@device)",
6
+ "device_ids": [
7
+ "@device"
8
+ ]
9
+ },
10
+ "validate#sampler": {
11
+ "_target_": "DistributedSampler",
12
+ "dataset": "@validate#dataset",
13
+ "even_divisible": false,
14
+ "shuffle": false
15
+ },
16
+ "validate#dataloader#sampler": "@validate#sampler",
17
+ "validate#handlers#1#_disabled_": "$dist.get_rank() > 0",
18
+ "initialize": [
19
+ "$import torch.distributed as dist",
20
+ "$dist.is_initialized() or dist.init_process_group(backend='nccl')",
21
+ "$torch.cuda.set_device(@device)",
22
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
23
+ "$import logging",
24
+ "$@validate#evaluator.logger.setLevel(logging.WARNING if dist.get_rank() > 0 else logging.INFO)"
25
+ ],
26
+ "run": [
27
+ "$@validate#evaluator.run()"
28
+ ],
29
+ "finalize": [
30
+ "$dist.is_initialized() and dist.destroy_process_group()"
31
+ ]
32
+ }
configs/multi_gpu_train.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "device": "$torch.device('cuda:' + os.environ['LOCAL_RANK'])",
3
+ "network": {
4
+ "_target_": "torch.nn.parallel.DistributedDataParallel",
5
+ "module": "$@network_def.to(@device)",
6
+ "device_ids": [
7
+ "@device"
8
+ ]
9
+ },
10
+ "train#sampler": {
11
+ "_target_": "DistributedSampler",
12
+ "dataset": "@train#dataset",
13
+ "even_divisible": true,
14
+ "shuffle": true
15
+ },
16
+ "train#dataloader#sampler": "@train#sampler",
17
+ "train#dataloader#shuffle": false,
18
+ "train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
19
+ "validate#sampler": {
20
+ "_target_": "DistributedSampler",
21
+ "dataset": "@validate#dataset",
22
+ "even_divisible": false,
23
+ "shuffle": false
24
+ },
25
+ "validate#dataloader#sampler": "@validate#sampler",
26
+ "validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
27
+ "initialize": [
28
+ "$import torch.distributed as dist",
29
+ "$dist.is_initialized() or dist.init_process_group(backend='nccl')",
30
+ "$torch.cuda.set_device(@device)",
31
+ "$monai.utils.set_determinism(seed=123)",
32
+ "$setattr(torch.backends.cudnn, 'benchmark', True)",
33
+ "$import logging",
34
+ "$@train#trainer.logger.setLevel(logging.WARNING if dist.get_rank() > 0 else logging.INFO)",
35
+ "$@validate#evaluator.logger.setLevel(logging.WARNING if dist.get_rank() > 0 else logging.INFO)"
36
+ ],
37
+ "run": [
38
+ "$@train#trainer.run()"
39
+ ],
40
+ "finalize": [
41
+ "$dist.is_initialized() and dist.destroy_process_group()"
42
+ ]
43
+ }
configs/train.json ADDED
@@ -0,0 +1,424 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "displayable_configs": {
3
+ "highres": true,
4
+ "init_LR": 0.0001
5
+ },
6
+ "imports": [
7
+ "$import glob",
8
+ "$import os",
9
+ "$import ignite"
10
+ ],
11
+ "bundle_root": ".",
12
+ "ckpt_dir": "$@bundle_root + '/models'",
13
+ "output_dir": "$@bundle_root + '/eval'",
14
+ "dataset_dir": "sampledata",
15
+ "images": "$list(sorted(glob.glob(@dataset_dir + '/imagesTr/*.nii.gz')))",
16
+ "labels": "$list(sorted(glob.glob(@dataset_dir + '/labelsTr/*.nii.gz')))",
17
+ "highres": true,
18
+ "val_interval": 20,
19
+ "init_LR": 0.0001,
20
+ "batch_size": 4,
21
+ "pixdim": "$[1.5, 1.5, 1.5] if @displayable_configs#highres else [3.0, 3.0, 3.0]",
22
+ "modelname": "$'model.pt' if @displayable_configs#highres else 'model_lowres.pt'",
23
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
24
+ "network_def": {
25
+ "_target_": "SegResNet",
26
+ "spatial_dims": 3,
27
+ "in_channels": 1,
28
+ "out_channels": 105,
29
+ "init_filters": 32,
30
+ "blocks_down": [
31
+ 1,
32
+ 2,
33
+ 2,
34
+ 4
35
+ ],
36
+ "blocks_up": [
37
+ 1,
38
+ 1,
39
+ 1
40
+ ],
41
+ "dropout_prob": 0.2
42
+ },
43
+ "network": "$@network_def.to(@device)",
44
+ "loss": {
45
+ "_target_": "DiceCELoss",
46
+ "to_onehot_y": true,
47
+ "softmax": true
48
+ },
49
+ "optimizer": {
50
+ "_target_": "torch.optim.AdamW",
51
+ "params": "[email protected]()",
52
+ "lr": "@displayable_configs#init_LR",
53
+ "weight_decay": 1e-05
54
+ },
55
+ "train": {
56
+ "deterministic_transforms": [
57
+ {
58
+ "_target_": "LoadImaged",
59
+ "keys": [
60
+ "image",
61
+ "label"
62
+ ]
63
+ },
64
+ {
65
+ "_target_": "EnsureChannelFirstd",
66
+ "keys": [
67
+ "image",
68
+ "label"
69
+ ]
70
+ },
71
+ {
72
+ "_target_": "EnsureTyped",
73
+ "keys": [
74
+ "image",
75
+ "label"
76
+ ]
77
+ },
78
+ {
79
+ "_target_": "Orientationd",
80
+ "keys": [
81
+ "image",
82
+ "label"
83
+ ],
84
+ "axcodes": "RAS"
85
+ },
86
+ {
87
+ "_target_": "Spacingd",
88
+ "keys": [
89
+ "image",
90
+ "label"
91
+ ],
92
+ "pixdim": "@pixdim",
93
+ "mode": [
94
+ "bilinear",
95
+ "nearest"
96
+ ]
97
+ },
98
+ {
99
+ "_target_": "NormalizeIntensityd",
100
+ "keys": "image",
101
+ "nonzero": true
102
+ },
103
+ {
104
+ "_target_": "CropForegroundd",
105
+ "keys": [
106
+ "image",
107
+ "label"
108
+ ],
109
+ "source_key": "image",
110
+ "margin": 10,
111
+ "k_divisible": [
112
+ 96,
113
+ 96,
114
+ 96
115
+ ]
116
+ },
117
+ {
118
+ "_target_": "GaussianSmoothd",
119
+ "keys": [
120
+ "image"
121
+ ],
122
+ "sigma": 0.4
123
+ },
124
+ {
125
+ "_target_": "ScaleIntensityd",
126
+ "keys": "image",
127
+ "minv": -1.0,
128
+ "maxv": 1.0
129
+ },
130
+ {
131
+ "_target_": "EnsureTyped",
132
+ "keys": [
133
+ "image",
134
+ "label"
135
+ ]
136
+ }
137
+ ],
138
+ "random_transforms": [
139
+ {
140
+ "_target_": "RandSpatialCropd",
141
+ "keys": [
142
+ "image",
143
+ "label"
144
+ ],
145
+ "roi_size": [
146
+ 96,
147
+ 96,
148
+ 96
149
+ ],
150
+ "random_size": false
151
+ }
152
+ ],
153
+ "preprocessing": {
154
+ "_target_": "Compose",
155
+ "transforms": "$@train#deterministic_transforms + @train#random_transforms"
156
+ },
157
+ "dataset": {
158
+ "_target_": "CacheDataset",
159
+ "data": "$[{'image': i, 'label': l} for i, l in zip(@images[:-10], @labels[:-10])]",
160
+ "transform": "@train#preprocessing",
161
+ "cache_rate": 0.4,
162
+ "num_workers": 4
163
+ },
164
+ "dataloader": {
165
+ "_target_": "DataLoader",
166
+ "dataset": "@train#dataset",
167
+ "batch_size": "@batch_size",
168
+ "shuffle": true,
169
+ "num_workers": 4
170
+ },
171
+ "inferer": {
172
+ "_target_": "SimpleInferer"
173
+ },
174
+ "postprocessing": {
175
+ "_target_": "Compose",
176
+ "transforms": [
177
+ {
178
+ "_target_": "Activationsd",
179
+ "keys": "pred",
180
+ "softmax": true
181
+ },
182
+ {
183
+ "_target_": "AsDiscreted",
184
+ "keys": [
185
+ "pred",
186
+ "label"
187
+ ],
188
+ "argmax": [
189
+ true,
190
+ false
191
+ ],
192
+ "to_onehot": 105
193
+ }
194
+ ]
195
+ },
196
+ "handlers": [
197
+ {
198
+ "_target_": "ValidationHandler",
199
+ "validator": "@validate#evaluator",
200
+ "epoch_level": true,
201
+ "interval": "@val_interval"
202
+ },
203
+ {
204
+ "_target_": "StatsHandler",
205
+ "tag_name": "train_loss",
206
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
207
+ },
208
+ {
209
+ "_target_": "TensorBoardStatsHandler",
210
+ "log_dir": "@output_dir",
211
+ "tag_name": "train_loss",
212
+ "output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
213
+ }
214
+ ],
215
+ "key_metric": {
216
+ "train_accuracy": {
217
+ "_target_": "ignite.metrics.Accuracy",
218
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
219
+ }
220
+ },
221
+ "trainer": {
222
+ "_target_": "SupervisedTrainer",
223
+ "max_epochs": 4000,
224
+ "device": "@device",
225
+ "train_data_loader": "@train#dataloader",
226
+ "network": "@network",
227
+ "loss_function": "@loss",
228
+ "optimizer": "@optimizer",
229
+ "inferer": "@train#inferer",
230
+ "postprocessing": "@train#postprocessing",
231
+ "key_train_metric": "@train#key_metric",
232
+ "train_handlers": "@train#handlers",
233
+ "amp": true
234
+ }
235
+ },
236
+ "validate": {
237
+ "preprocessing": {
238
+ "_target_": "Compose",
239
+ "transforms": [
240
+ {
241
+ "_target_": "LoadImaged",
242
+ "keys": [
243
+ "image",
244
+ "label"
245
+ ]
246
+ },
247
+ {
248
+ "_target_": "EnsureChannelFirstd",
249
+ "keys": [
250
+ "image",
251
+ "label"
252
+ ]
253
+ },
254
+ {
255
+ "_target_": "EnsureTyped",
256
+ "keys": [
257
+ "image",
258
+ "label"
259
+ ]
260
+ },
261
+ {
262
+ "_target_": "Orientationd",
263
+ "keys": [
264
+ "image",
265
+ "label"
266
+ ],
267
+ "axcodes": "RAS"
268
+ },
269
+ {
270
+ "_target_": "Spacingd",
271
+ "keys": [
272
+ "image",
273
+ "label"
274
+ ],
275
+ "pixdim": "@pixdim",
276
+ "mode": [
277
+ "bilinear",
278
+ "nearest"
279
+ ]
280
+ },
281
+ {
282
+ "_target_": "NormalizeIntensityd",
283
+ "keys": "image",
284
+ "nonzero": true
285
+ },
286
+ {
287
+ "_target_": "CropForegroundd",
288
+ "keys": [
289
+ "image",
290
+ "label"
291
+ ],
292
+ "source_key": "image",
293
+ "margin": 10,
294
+ "k_divisible": [
295
+ 96,
296
+ 96,
297
+ 96
298
+ ]
299
+ },
300
+ {
301
+ "_target_": "GaussianSmoothd",
302
+ "keys": [
303
+ "image"
304
+ ],
305
+ "sigma": 0.4
306
+ },
307
+ {
308
+ "_target_": "ScaleIntensityd",
309
+ "keys": "image",
310
+ "minv": -1.0,
311
+ "maxv": 1.0
312
+ },
313
+ {
314
+ "_target_": "CenterSpatialCropd",
315
+ "keys": [
316
+ "image",
317
+ "label"
318
+ ],
319
+ "roi_size": [
320
+ 160,
321
+ 160,
322
+ 160
323
+ ]
324
+ }
325
+ ]
326
+ },
327
+ "postprocessing": {
328
+ "_target_": "Compose",
329
+ "transforms": [
330
+ {
331
+ "_target_": "Activationsd",
332
+ "keys": "pred",
333
+ "softmax": true
334
+ },
335
+ {
336
+ "_target_": "AsDiscreted",
337
+ "keys": [
338
+ "pred",
339
+ "label"
340
+ ],
341
+ "argmax": [
342
+ true,
343
+ false
344
+ ],
345
+ "to_onehot": 105
346
+ }
347
+ ]
348
+ },
349
+ "dataset": {
350
+ "_target_": "Dataset",
351
+ "data": "$[{'image': i, 'label': l} for i, l in zip(@images[-10:], @labels[-10:])]",
352
+ "transform": "@validate#preprocessing"
353
+ },
354
+ "dataloader": {
355
+ "_target_": "DataLoader",
356
+ "dataset": "@validate#dataset",
357
+ "batch_size": 1,
358
+ "shuffle": false,
359
+ "num_workers": 4
360
+ },
361
+ "inferer": {
362
+ "_target_": "SlidingWindowInferer",
363
+ "roi_size": [
364
+ 96,
365
+ 96,
366
+ 96
367
+ ],
368
+ "sw_batch_size": 1,
369
+ "overlap": 0.25
370
+ },
371
+ "handlers": [
372
+ {
373
+ "_target_": "StatsHandler",
374
+ "iteration_log": false
375
+ },
376
+ {
377
+ "_target_": "TensorBoardStatsHandler",
378
+ "log_dir": "@output_dir",
379
+ "iteration_log": false
380
+ },
381
+ {
382
+ "_target_": "CheckpointSaver",
383
+ "save_dir": "@ckpt_dir",
384
+ "save_dict": {
385
+ "model": "@network"
386
+ },
387
+ "save_key_metric": true,
388
+ "key_metric_filename": "@modelname"
389
+ }
390
+ ],
391
+ "key_metric": {
392
+ "val_mean_dice": {
393
+ "_target_": "MeanDice",
394
+ "include_background": false,
395
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
396
+ }
397
+ },
398
+ "additional_metrics": {
399
+ "val_accuracy": {
400
+ "_target_": "ignite.metrics.Accuracy",
401
+ "output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
402
+ }
403
+ },
404
+ "evaluator": {
405
+ "_target_": "SupervisedEvaluator",
406
+ "device": "@device",
407
+ "val_data_loader": "@validate#dataloader",
408
+ "network": "@network",
409
+ "inferer": "@validate#inferer",
410
+ "postprocessing": "@validate#postprocessing",
411
+ "key_val_metric": "@validate#key_metric",
412
+ "additional_metrics": "@validate#additional_metrics",
413
+ "val_handlers": "@validate#handlers",
414
+ "amp": true
415
+ }
416
+ },
417
+ "initialize": [
418
+ "$monai.utils.set_determinism(seed=123)",
419
+ "$setattr(torch.backends.cudnn, 'benchmark', True)"
420
+ ],
421
+ "run": [
422
+ "$@train#trainer.run()"
423
+ ]
424
+ }
docs/README.md ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model Overview
2
+ Body CT segmentation models are evolving. Starting from abdominal multi-organ segmentation model [1]. Now the community is developing hundreds of target anatomies. In this bundle, we provide re-trained models for (3D) segmentation of 104 whole-body segments.
3
+
4
+ This model is trained using the SegResNet [3] network. The model is trained using TotalSegmentator datasets [2].
5
+
6
+ ![structures](https://github.com/wasserth/TotalSegmentator/blob/30cfde5e7dcd164cd47435f7d3d85505e8e7d7bb/resources/imgs/overview_classes.png)
7
+
8
+ Figure source from the TotalSegmentator [2].
9
+
10
+ ### MONAI Label Showcase
11
+
12
+ - We highlight the use of this bundle to use and visualize in MONAI Label + 3D Slicer integration.
13
+
14
+ ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_monailabel.png) <br>
15
+
16
+ ## Data
17
+
18
+ The training set is the 104 whole-body structures from the TotalSegmentator released datasets. Users can find more details on the datasets at https://github.com/wasserth/TotalSegmentator. All rights and licenses are reserved to the original authors.
19
+
20
+ - Target: 104 structures
21
+ - Modality: CT
22
+ - Source: TotalSegmentator
23
+ - Challenge: Large volumes of structures in CT images
24
+
25
+ ### Preprocessing
26
+
27
+ To use the bundle, users need to download the data and merge all annotated labels into one NIFTI file. Each file contains 0-104 values, each value represents one anatomy class. We provide sample datasets and step-by-step instructions on how to get prepared:
28
+
29
+ Instruction on how to start with the prepared sample dataset:
30
+
31
+ 1. Download the sample set with this [link](https://drive.google.com/file/d/1DtDmERVMjks1HooUhggOKAuDm0YIEunG/view?usp=share_link).
32
+ 2. Unzip the dataset into a workspace folder.
33
+ 3. There will be three sub-folders, each with several preprocessed CT volumes:
34
+ - imagesTr: 20 samples of training scans and validation scans.
35
+ - labelsTr: 20 samples of pre-processed label files.
36
+ - imagesTs: 5 samples of sample testing scans.
37
+ 4. Usage: users can add `--dataset_dir <totalSegmentator_mergedLabel_samples>` to the bundle run command to specify the data path.
38
+
39
+ Instruction on how to merge labels with the raw dataset:
40
+
41
+ - There are 104 binary masks associated with each CT scan, each mask corresponds to anatomy. These pixel-level labels are class-exclusive, users can assign each anatomy a class number then merge to a single NIFTI file as the ground truth label file. The order of anatomies can be found [here](https://github.com/Project-MONAI/model-zoo/blob/dev/models/wholeBody_ct_segmentation/configs/metadata.json).
42
+
43
+ ## Training Configuration
44
+
45
+ The segmentation of 104 tissues is formulated as voxel-wise multi-label segmentation. The model is optimized with the gradient descent method minimizing Dice + cross-entropy loss between the predicted mask and ground truth segmentation.
46
+
47
+ The training was performed with the following:
48
+
49
+ - GPU: 48 GB of GPU memory
50
+ - Actual Model Input: 96 x 96 x 96
51
+ - AMP: True
52
+ - Optimizer: AdamW
53
+ - Learning Rate: 1e-4
54
+ - Loss: DiceCELoss
55
+
56
+ ## Evaluation Configuration
57
+
58
+ The model predicts 105 channels output at the same time using softmax and argmax. It requires higher GPU memory when calculating
59
+ metrics between predicted masked and ground truth. The consumption of hardware requirements, such as GPU memory is dependent on the input CT volume size.
60
+
61
+ The recommended evaluation configuration and the metrics were acquired with the following hardware:
62
+
63
+ - GPU: equal to or larger than 48 GB of GPU memory
64
+ - Model: high resolution model pre-trained at a slice thickness of 1.5 mm.
65
+
66
+ Note: there are two pre-trained models provided. The default is the high resolution model, evaluation pipeline at slice thickness of **1.5mm**,
67
+ users can use the lower resolution model if out of memory (OOM) occurs, which the model is pre-trained with CT scans at a slice thickness of **3.0mm**.
68
+
69
+ Users can also use the inference pipeline for predicted masks, we provide detailed GPU memory consumption in the following sections.
70
+
71
+ ### Memory Consumption
72
+
73
+ - Dataset Manager: CacheDataset
74
+ - Data Size: 1000 3D Volumes
75
+ - Cache Rate: 0.4
76
+ - Single GPU - System RAM Usage: 83G
77
+ - Multi GPU (8 GPUs) - System RAM Usage: 666G
78
+
79
+ ### Memory Consumption Warning
80
+
81
+ If you face memory issues with CacheDataset, you can either switch to a regular Dataset class or lower the caching rate `cache_rate` in the configurations within range [0, 1] to minimize the System RAM requirements.
82
+
83
+ ### Input
84
+
85
+ One channel
86
+ - CT image
87
+
88
+ ### Output
89
+
90
+ 105 channels
91
+ - Label 0: Background (everything else)
92
+ - label 1-105: Foreground classes (104)
93
+
94
+ ## Resource Requirements and Latency Benchmarks
95
+
96
+ ### GPU Consumption Warning
97
+
98
+ The model is trained with 104 classes in single instance, for predicting 104 structures, the GPU consumption can be large.
99
+
100
+ For inference pipeline, please refer to the following section for benchmarking results. Normally, a CT scans with 300 slices will take about 27G memory, if your CT is larger, please prepare larger GPU memory or use CPU for inference.
101
+
102
+ ### High-Resolution and Low-Resolution Models
103
+
104
+ We retrained two versions of the totalSegmentator models, following the original paper and implementation.
105
+ To meet multiple demands according to computation resources and performance, we provide a 1.5 mm model and a 3.0 mm model, both models are trained with 104 foreground output channels.
106
+
107
+ In this bundle, we configured a parameter called `highres`, users can set it to `true` when using 1.5 mm model, and set it to `false` to use the 3.0 mm model. The high-resolution model is named `model.pt` by default, the low-resolution model is named `model_lowres.pt`.
108
+
109
+ In MONAI Label use case, users can set the parameter in 3D Slicer plugin to control which model to infer and train.
110
+
111
+ - Pretrained Checkpoints
112
+ - 1.5 mm model: [Download link](https://drive.google.com/file/d/1PHpFWboimEXmMSe2vBra6T8SaCMC2SHT/view?usp=share_link)
113
+ - 3.0 mm model: [Download link](https://drive.google.com/file/d/1c3osYscnr6710ObqZZS8GkZJQlWlc7rt/view?usp=share_link)
114
+
115
+ Latencies and memory performance of using the bundle with MONAI Label:
116
+
117
+ Tested Image Dimension: **(512, 512, 397)**, the slice thickness is **1.5mm** in this case. After resample to **1.5** isotropic resolution, the dimension is **(287, 287, 397)**
118
+
119
+ ### 1.5 mm (highres) model (Single Model with 104 foreground classes)
120
+
121
+ Benchmarking on GPU: Memory: **28.73G**
122
+
123
+ - `++ Latencies => Total: 6.0277; Pre: 1.6228; Inferer: 4.1153; Invert: 0.0000; Post: 0.0897; Write: 0.1995`
124
+
125
+ Benchmarking on CPU: Memory: **26G**
126
+
127
+ - `++ Latencies => Total: 38.3108; Pre: 1.6643; Inferer: 30.3018; Invert: 0.0000; Post: 6.1656; Write: 0.1786`
128
+
129
+ ### 3.0 mm (lowres) model (single model with 104 foreground classes)
130
+
131
+ GPU: Memory: **5.89G**
132
+
133
+ - `++ Latencies => Total: 1.9993; Pre: 1.2363; Inferer: 0.5207; Invert: 0.0000; Post: 0.0358; Write: 0.2060`
134
+
135
+ CPU: Memory: **2.3G**
136
+
137
+ - `++ Latencies => Total: 6.6138; Pre: 1.3192; Inferer: 3.6746; Invert: 0.0000; Post: 1.4431; Write: 0.1760`
138
+
139
+ ## Performance
140
+
141
+ ### 1.5 mm Model Training
142
+
143
+ #### Training Accuracy
144
+
145
+ ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_train_accuracy.png) <br>
146
+
147
+ #### Validation Dice
148
+
149
+ ![](https://developer.download.nvidia.com/assets/Clara/Images/monai_wholeBody_ct_segmentation_15mm_validation.png) <br>
150
+
151
+ Please note that this bundle is non-deterministic because of the trilinear interpolation used in the network. Therefore, reproducing the training process may not get exactly the same performance.
152
+ Please refer to https://pytorch.org/docs/stable/notes/randomness.html#reproducibility for more details about reproducibility.
153
+
154
+ #### TensorRT speedup
155
+ This bundle supports acceleration with TensorRT. The table below displays the speedup ratios observed on an A100 80G GPU.
156
+
157
+ | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
158
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
159
+ | model computation | 88.20 | 37.1 | 39.2 | 36.9 | 2.38 | 2.25 | 2.39 | 1.01 |
160
+ | end2end | 3717.14 | 2596.77 | 2517.29 | 2501.37 | 1.43 | 1.48 | 1.49 | 1.04 |
161
+
162
+ Where:
163
+ - `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
164
+ - `end2end` means run the bundle end-to-end with the TensorRT based model.
165
+ - `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
166
+ - `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
167
+ - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
168
+ - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
169
+
170
+ This result is benchmarked under:
171
+ - TensorRT: 8.6.1+cuda12.0
172
+ - Torch-TensorRT Version: 1.4.0
173
+ - CPU Architecture: x86-64
174
+ - OS: ubuntu 20.04
175
+ - Python version:3.8.10
176
+ - CUDA version: 12.1
177
+ - GPU models and configuration: A100 80G
178
+
179
+ ## MONAI Bundle Commands
180
+ In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.
181
+
182
+ For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).
183
+
184
+ #### Execute training:
185
+
186
+ ```
187
+ python -m monai.bundle run --config_file configs/train.json
188
+ ```
189
+
190
+ Please note that if the default dataset path is not modified with the actual path in the bundle config files, you can also override it by using `--dataset_dir`:
191
+
192
+ ```
193
+ python -m monai.bundle run --config_file configs/train.json --dataset_dir <actual dataset path>
194
+ ```
195
+
196
+ #### Override the `train` config to execute multi-GPU training:
197
+
198
+ ```
199
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
200
+ ```
201
+
202
+ Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).
203
+
204
+ #### Override the `train` config to execute evaluation with the trained model:
205
+
206
+ ```
207
+ python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
208
+ ```
209
+
210
+ #### Override the `train` config and `evaluate` config to execute multi-GPU evaluation:
211
+
212
+ ```
213
+ torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json','configs/multi_gpu_evaluate.json']"
214
+ ```
215
+
216
+ #### Execute inference:
217
+
218
+ ```
219
+ python -m monai.bundle run --config_file configs/inference.json
220
+ ```
221
+ #### Execute inference with Data Samples:
222
+
223
+ ```
224
+ python -m monai.bundle run --config_file configs/inference.json --datalist "['sampledata/imagesTr/s0037.nii.gz','sampledata/imagesTr/s0038.nii.gz']"
225
+ ```
226
+
227
+ #### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
228
+
229
+ ```
230
+ python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --use_trace "True"
231
+ ```
232
+
233
+ #### Execute inference with the TensorRT model:
234
+
235
+ ```
236
+ python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
237
+ ```
238
+
239
+
240
+ # References
241
+
242
+ [1] Tang, Y., Gao, R., Lee, H.H., Han, S., Chen, Y., Gao, D., Nath, V., Bermudez, C., Savona, M.R., Abramson, R.G. and Bao, S., 2021. High-resolution 3D abdominal segmentation with random patch network fusion. Medical image analysis, 69, p.101894.
243
+
244
+ [2] Wasserthal, J., Meyer, M., Breit, H.C., Cyriac, J., Yang, S. and Segeroth, M., 2022. TotalSegmentator: robust segmentation of 104 anatomical structures in CT images. arXiv preprint arXiv:2208.05868.
245
+
246
+ [3] Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y. and Xu, D., 2022. Automated head and neck tumor segmentation from 3D PET/CT. arXiv preprint arXiv:2209.10809.
247
+
248
+
249
+
250
+ # License
251
+
252
+ Copyright (c) MONAI Consortium
253
+
254
+ Licensed under the Apache License, Version 2.0 (the "License");
255
+ you may not use this file except in compliance with the License.
256
+ You may obtain a copy of the License at
257
+
258
+ http://www.apache.org/licenses/LICENSE-2.0
259
+
260
+ Unless required by applicable law or agreed to in writing, software
261
+ distributed under the License is distributed on an "AS IS" BASIS,
262
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
263
+ See the License for the specific language governing permissions and
264
+ limitations under the License.
docs/data_license.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Third Party Licenses
2
+ -----------------------------------------------------------------------
3
+
4
+ /*********************************************************************/
5
+ i. TotalSegmentator
6
+ https://zenodo.org/record/6802614#.Y9iTydLMJ6I
models/model.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80b429fb4b080df11c9ed0b0bdaa8a615ff083921bb213a512cf285afbc4e3fe
3
+ size 75225922
models/model_lowres.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3ab55eb979785fdcb30690872c210bbeee73d79a170c32fdaa1eca117779f90
3
+ size 75225922