mmuratardag commited on
Commit
118b9b4
·
1 Parent(s): eaeef66

fixed the typos

Browse files
Files changed (1) hide show
  1. README.md +24 -18
README.md CHANGED
@@ -36,21 +36,27 @@ This model is a fine-tuned RoBERTa-based classifier designed to predict the pres
36
  The model can be directly used for classifying text into the following moral foundations:
37
 
38
  **Care**: Care/harm for others, protecting them from harm.
 
39
  **Fairness**: Justice, treating others equally.
 
40
  **Loyalty**: Group loyalty, patriotism, self-sacrifice for the group.
 
41
  **Authority**: Respect for tradition and legitimate authority.
 
42
  **Sanctity**: Disgust, avoiding dangerous diseases and contaminants.
43
 
44
  Each foundation is represented as a virtue (positive expression) and a vice (negative expression).
45
 
46
- It's particularly useful for researchers, policymakers, and analysts interested in understanding moral reasoning and rhetoric in different contexts.
47
 
48
  ### Downstream Use
49
 
50
  Potential downstream uses include:
51
 
52
  **Content analysis**: Analyzing the moral framing of news articles, social media posts, or other types of text.
 
53
  **Opinion mining**: Understanding the moral values underlying people's opinions and arguments.
 
54
  **Ethical assessment**: Evaluating the ethical implications of decisions, policies, or products.
55
 
56
  ### Out-of-Scope Use
@@ -116,12 +122,12 @@ The trainng data is a subset of >60M sentences.
116
 
117
  The model was fine-tuned using the HuggingFace Transformers library with the following hyperparameters:
118
 
119
- Num_train_epochs: 10
120
- Per_device_train_batch_size: 8
121
- Per_device_eval_batch_size: 8
122
- Learning rate: 3e-5
123
- Optimizer: AdamW
124
- Loss function: Binary Cross Entropy with Logits Loss
125
 
126
  ## Evaluation
127
 
@@ -147,61 +153,61 @@ The model achieves high overall performance, with variations across different mo
147
 
148
  ***Per-class metrics:***
149
 
150
- care_virtue:
151
  accuracy: 0.9954
152
  precision: 0.9779
153
  recall: 0.9758
154
  f1: 0.9769
155
 
156
- care_vice:
157
  accuracy: 0.9960
158
  precision: 0.9734
159
  recall: 0.9506
160
  f1: 0.9619
161
 
162
- fairness_virtue:
163
  accuracy: 0.9974
164
  precision: 0.9786
165
  recall: 0.9645
166
  f1: 0.9715
167
 
168
- fairness_vice:
169
  accuracy: 0.9970
170
  precision: 0.9319
171
  recall: 0.8574
172
  f1: 0.8931
173
 
174
- loyalty_virtue:
175
  accuracy: 0.9945
176
  precision: 0.9811
177
  recall: 0.9780
178
  f1: 0.9795
179
 
180
- loyalty_vice:
181
  accuracy: 0.9972
182
  precision: 1.0000
183
  recall: 0.0531
184
  f1: 0.1008
185
 
186
- authority_virtue:
187
  accuracy: 0.9914
188
  precision: 0.9621
189
  recall: 0.9683
190
  f1: 0.9652
191
 
192
- authority_vice:
193
  accuracy: 0.9963
194
  precision: 0.9848
195
  recall: 0.5838
196
  f1: 0.7331
197
 
198
- sanctity_virtue:
199
  accuracy: 0.9963
200
  precision: 0.9640
201
  recall: 0.9458
202
  f1: 0.9548
203
 
204
- sanctity_vice:
205
  accuracy: 0.9958
206
  precision: 0.9538
207
  recall: 0.8530
@@ -245,7 +251,7 @@ via my personal website. thx
245
 
246
  ## Citation
247
 
248
- *** If you use this model in your research or applications, please cite it as follows:***
249
 
250
  Ardag, M.M. (2024) Moral Foundations Classifier. HuggingFace. https://doi.org/10.57967/hf/2774
251
 
 
36
  The model can be directly used for classifying text into the following moral foundations:
37
 
38
  **Care**: Care/harm for others, protecting them from harm.
39
+
40
  **Fairness**: Justice, treating others equally.
41
+
42
  **Loyalty**: Group loyalty, patriotism, self-sacrifice for the group.
43
+
44
  **Authority**: Respect for tradition and legitimate authority.
45
+
46
  **Sanctity**: Disgust, avoiding dangerous diseases and contaminants.
47
 
48
  Each foundation is represented as a virtue (positive expression) and a vice (negative expression).
49
 
50
+ It's particularly useful for researchers, policymakers, and analysts interested in understanding moral reasoning and rhetoric in different contexts.
51
 
52
  ### Downstream Use
53
 
54
  Potential downstream uses include:
55
 
56
  **Content analysis**: Analyzing the moral framing of news articles, social media posts, or other types of text.
57
+
58
  **Opinion mining**: Understanding the moral values underlying people's opinions and arguments.
59
+
60
  **Ethical assessment**: Evaluating the ethical implications of decisions, policies, or products.
61
 
62
  ### Out-of-Scope Use
 
122
 
123
  The model was fine-tuned using the HuggingFace Transformers library with the following hyperparameters:
124
 
125
+ * Num_train_epochs: 10
126
+ * Per_device_train_batch_size: 8
127
+ * Per_device_eval_batch_size: 8
128
+ * Learning rate: 3e-5
129
+ * Optimizer: AdamW
130
+ * Loss function: Binary Cross Entropy with Logits Loss
131
 
132
  ## Evaluation
133
 
 
153
 
154
  ***Per-class metrics:***
155
 
156
+ * care_virtue:
157
  accuracy: 0.9954
158
  precision: 0.9779
159
  recall: 0.9758
160
  f1: 0.9769
161
 
162
+ * care_vice:
163
  accuracy: 0.9960
164
  precision: 0.9734
165
  recall: 0.9506
166
  f1: 0.9619
167
 
168
+ * fairness_virtue:
169
  accuracy: 0.9974
170
  precision: 0.9786
171
  recall: 0.9645
172
  f1: 0.9715
173
 
174
+ * fairness_vice:
175
  accuracy: 0.9970
176
  precision: 0.9319
177
  recall: 0.8574
178
  f1: 0.8931
179
 
180
+ * loyalty_virtue:
181
  accuracy: 0.9945
182
  precision: 0.9811
183
  recall: 0.9780
184
  f1: 0.9795
185
 
186
+ * loyalty_vice:
187
  accuracy: 0.9972
188
  precision: 1.0000
189
  recall: 0.0531
190
  f1: 0.1008
191
 
192
+ * authority_virtue:
193
  accuracy: 0.9914
194
  precision: 0.9621
195
  recall: 0.9683
196
  f1: 0.9652
197
 
198
+ * authority_vice:
199
  accuracy: 0.9963
200
  precision: 0.9848
201
  recall: 0.5838
202
  f1: 0.7331
203
 
204
+ * sanctity_virtue:
205
  accuracy: 0.9963
206
  precision: 0.9640
207
  recall: 0.9458
208
  f1: 0.9548
209
 
210
+ * sanctity_vice:
211
  accuracy: 0.9958
212
  precision: 0.9538
213
  recall: 0.8530
 
251
 
252
  ## Citation
253
 
254
+ ***If you use this model in your research or applications, please cite it as follows:***
255
 
256
  Ardag, M.M. (2024) Moral Foundations Classifier. HuggingFace. https://doi.org/10.57967/hf/2774
257