File size: 26,651 Bytes
b038b10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# Copyright (c) 2021, Soohwan Kim. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import math
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn


class SamePad(nn.Module):
    def __init__(self, kernel_size, causal=False):
        super().__init__()
        if causal:
            self.remove = kernel_size - 1
        else:
            self.remove = 1 if kernel_size % 2 == 0 else 0

    def forward(self, x):
        if self.remove > 0:
            x = x[:, :, : -self.remove]
        return x


class TransposeLast(nn.Module):
    def __init__(self, deconstruct_idx=None, tranpose_dim=-2):
        super().__init__()
        self.deconstruct_idx = deconstruct_idx
        self.tranpose_dim = tranpose_dim

    def forward(self, x):
        if self.deconstruct_idx is not None:
            x = x[self.deconstruct_idx]
        return x.transpose(self.tranpose_dim, -1)


class Swish(nn.Module):
    def __init__(self):
        super(Swish, self).__init__()

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return inputs * inputs.sigmoid()


class GLU(nn.Module):
    def __init__(self, dim: int) -> None:
        super(GLU, self).__init__()
        self.dim = dim

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        outputs, gate = inputs.chunk(2, dim=self.dim)
        return outputs * gate.sigmoid()


class ResidualConnectionModule(nn.Module):
    def __init__(
        self,
        module: nn.Module,
        module_factor: float = 1.0,
        input_factor: float = 1.0,
    ):
        super(ResidualConnectionModule, self).__init__()
        self.module = module
        self.module_factor = module_factor
        self.input_factor = input_factor

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return (self.module(inputs) * self.module_factor) + (inputs * self.input_factor)


class Linear(nn.Module):
    def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
        super(Linear, self).__init__()
        self.linear = nn.Linear(in_features, out_features, bias=bias)
        nn.init.xavier_uniform_(self.linear.weight)
        if bias:
            nn.init.zeros_(self.linear.bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.linear(x)


class View(nn.Module):
    def __init__(self, shape: tuple, contiguous: bool = False):
        super(View, self).__init__()
        self.shape = shape
        self.contiguous = contiguous

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.contiguous:
            x = x.contiguous()

        return x.view(*self.shape)


class Transpose(nn.Module):
    def __init__(self, shape: tuple):
        super(Transpose, self).__init__()
        self.shape = shape

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.transpose(*self.shape)


class FeedForwardModule(nn.Module):
    def __init__(
        self,
        encoder_dim: int = 512,
        expansion_factor: int = 4,
        dropout_p: float = 0.1,
    ) -> None:
        super(FeedForwardModule, self).__init__()
        self.sequential = nn.Sequential(
            nn.LayerNorm(encoder_dim),
            Linear(encoder_dim, encoder_dim * expansion_factor, bias=True),
            Swish(),
            nn.Dropout(p=dropout_p),
            Linear(encoder_dim * expansion_factor, encoder_dim, bias=True),
            nn.Dropout(p=dropout_p),
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return self.sequential(inputs)


class DepthwiseConv1d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        bias: bool = False,
    ) -> None:
        super(DepthwiseConv1d, self).__init__()
        assert (
            out_channels % in_channels == 0
        ), "out_channels should be constant multiple of in_channels"
        self.conv = nn.Conv1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            groups=in_channels,
            stride=stride,
            padding=padding,
            bias=bias,
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return self.conv(inputs)


class PointwiseConv1d(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        stride: int = 1,
        padding: int = 0,
        bias: bool = True,
    ) -> None:
        super(PointwiseConv1d, self).__init__()
        self.conv = nn.Conv1d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=stride,
            padding=padding,
            bias=bias,
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return self.conv(inputs)


class ConformerConvModule(nn.Module):
    def __init__(
        self,
        in_channels: int,
        kernel_size: int = 31,
        expansion_factor: int = 2,
        dropout_p: float = 0.1,
    ) -> None:
        super(ConformerConvModule, self).__init__()
        assert (
            kernel_size - 1
        ) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
        assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2"

        self.sequential = nn.Sequential(
            nn.LayerNorm(in_channels),
            Transpose(shape=(1, 2)),
            PointwiseConv1d(
                in_channels,
                in_channels * expansion_factor,
                stride=1,
                padding=0,
                bias=True,
            ),
            GLU(dim=1),
            DepthwiseConv1d(
                in_channels,
                in_channels,
                kernel_size,
                stride=1,
                padding=(kernel_size - 1) // 2,
            ),
            nn.BatchNorm1d(in_channels),
            Swish(),
            PointwiseConv1d(in_channels, in_channels, stride=1, padding=0, bias=True),
            nn.Dropout(p=dropout_p),
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        return self.sequential(inputs).transpose(1, 2)


class FramewiseConv2dSubampling(nn.Module):
    def __init__(self, out_channels: int, subsample_rate: int = 2) -> None:
        super(FramewiseConv2dSubampling, self).__init__()
        assert subsample_rate in {2, 4}, "subsample_rate should be 2 or 4"
        self.subsample_rate = subsample_rate
        self.cnn = nn.Sequential(
            nn.Conv2d(1, out_channels, kernel_size=3, stride=2),
            nn.ReLU(),
            nn.Conv2d(
                out_channels,
                out_channels,
                kernel_size=3,
                stride=(2 if subsample_rate == 4 else 1, 2),
                padding=(0 if subsample_rate == 4 else 1, 0),
            ),
            nn.ReLU(),
        )

    def forward(
        self, inputs: torch.Tensor, input_lengths: torch.LongTensor
    ) -> Tuple[torch.Tensor, torch.LongTensor]:
        # inputs: (B, T, C) -> (B, 1, T, C)
        if self.subsample_rate == 2 and inputs.shape[1] % 2 == 0:
            inputs = F.pad(inputs, (0, 0, 0, 1), "constant", 0)
        outputs = self.cnn(inputs.unsqueeze(1))
        batch_size, channels, subsampled_lengths, sumsampled_dim = outputs.size()

        outputs = outputs.permute(0, 2, 1, 3)
        outputs = outputs.contiguous().view(
            batch_size, subsampled_lengths, channels * sumsampled_dim
        )

        if self.subsample_rate == 4:
            output_lengths = (((input_lengths - 1) >> 1) - 1) >> 1
        else:
            output_lengths = input_lengths >> 1

        return outputs, output_lengths


class PatchwiseConv2dSubampling(nn.Module):
    def __init__(
        self,
        mel_dim: int,
        out_channels: int,
        patch_size_time: int = 16,
        patch_size_freq: int = 16,
    ) -> None:
        super(PatchwiseConv2dSubampling, self).__init__()

        self.mel_dim = mel_dim
        self.patch_size_time = patch_size_time
        self.patch_size_freq = patch_size_freq

        self.proj = nn.Conv2d(
            1,
            out_channels,
            kernel_size=(patch_size_time, patch_size_freq),
            stride=(patch_size_time, patch_size_freq),
            padding=0,
        )
        self.cnn = nn.Sequential(
            nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
        )

    @property
    def subsample_rate(self) -> int:
        return self.patch_size_time * self.patch_size_freq // self.mel_dim

    def forward(
        self, inputs: torch.Tensor, input_lengths: torch.LongTensor
    ) -> Tuple[torch.Tensor, torch.LongTensor]:
        assert (
            inputs.shape[2] == self.mel_dim
        ), "inputs.shape[2] should be equal to mel_dim"

        # inputs: (B, Time, Freq) -> (B, 1, Time, Freq)
        outputs = self.proj(inputs.unsqueeze(1))
        outputs = self.cnn(outputs)
        # (B, channels, Time // patch_size_time, Freq // patch_size_freq)
        outputs = outputs.flatten(2, 3).transpose(1, 2)
        # (B, (Time // patch_size_time) * (Freq // patch_size_freq), channels)

        output_lengths = (
            input_lengths
            // self.patch_size_time
            * (self.mel_dim // self.patch_size_freq)
        )

        return outputs, output_lengths


class RelPositionalEncoding(nn.Module):
    def __init__(self, d_model: int, max_len: int = 10000) -> None:
        super(RelPositionalEncoding, self).__init__()
        self.d_model = d_model
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))

    def extend_pe(self, x: torch.Tensor) -> None:
        if self.pe is not None:
            if self.pe.size(1) >= x.size(1) * 2 - 1:
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return

        pe_positive = torch.zeros(x.size(1), self.d_model)
        pe_negative = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe_positive[:, 0::2] = torch.sin(position * div_term)
        pe_positive[:, 1::2] = torch.cos(position * div_term)
        pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
        pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)

        pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
        pe_negative = pe_negative[1:].unsqueeze(0)
        pe = torch.cat([pe_positive, pe_negative], dim=1)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, T, C)
        self.extend_pe(x)
        pos_emb = self.pe[
            :,
            self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
        ]
        return pos_emb


class RelativeMultiHeadAttention(nn.Module):
    def __init__(
        self,
        d_model: int = 512,
        num_heads: int = 16,
        dropout_p: float = 0.1,
    ):
        super(RelativeMultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model % num_heads should be zero."
        self.d_model = d_model
        self.d_head = int(d_model / num_heads)
        self.num_heads = num_heads
        self.sqrt_dim = math.sqrt(self.d_head)

        self.query_proj = Linear(d_model, d_model)
        self.key_proj = Linear(d_model, d_model)
        self.value_proj = Linear(d_model, d_model)
        self.pos_proj = Linear(d_model, d_model, bias=False)

        self.dropout = nn.Dropout(p=dropout_p)
        self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
        torch.nn.init.xavier_uniform_(self.u_bias)
        torch.nn.init.xavier_uniform_(self.v_bias)

        self.out_proj = Linear(d_model, d_model)

    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        pos_embedding: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = value.size(0)

        query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
        key = (
            self.key_proj(key)
            .view(batch_size, -1, self.num_heads, self.d_head)
            .permute(0, 2, 1, 3)
        )
        value = (
            self.value_proj(value)
            .view(batch_size, -1, self.num_heads, self.d_head)
            .permute(0, 2, 1, 3)
        )
        pos_embedding = self.pos_proj(pos_embedding).view(
            batch_size, -1, self.num_heads, self.d_head
        )

        content_score = torch.matmul(
            (query + self.u_bias).transpose(1, 2), key.transpose(2, 3)
        )
        pos_score = torch.matmul(
            (query + self.v_bias).transpose(1, 2),
            pos_embedding.permute(0, 2, 3, 1),
        )
        pos_score = self._relative_shift(pos_score)

        score = (content_score + pos_score) / self.sqrt_dim

        if mask is not None:
            mask = mask.unsqueeze(1)
            score.masked_fill_(mask, -1e9)

        attn = F.softmax(score, -1)
        attn = self.dropout(attn)

        context = torch.matmul(attn, value).transpose(1, 2)
        context = context.contiguous().view(batch_size, -1, self.d_model)

        return self.out_proj(context), attn

    def _relative_shift(self, pos_score: torch.Tensor) -> torch.Tensor:
        batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
        zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
        padded_pos_score = torch.cat([zeros, pos_score], dim=-1)

        padded_pos_score = padded_pos_score.view(
            batch_size, num_heads, seq_length2 + 1, seq_length1
        )
        pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)[
            :, :, :, : seq_length2 // 2 + 1
        ]

        return pos_score


class MultiHeadedSelfAttentionModule(nn.Module):
    def __init__(self, d_model: int, num_heads: int, dropout_p: float = 0.1):
        super(MultiHeadedSelfAttentionModule, self).__init__()
        self.positional_encoding = RelPositionalEncoding(d_model)
        self.layer_norm = nn.LayerNorm(d_model)
        self.attention = RelativeMultiHeadAttention(d_model, num_heads, dropout_p)
        self.dropout = nn.Dropout(p=dropout_p)

    def forward(
        self, inputs: torch.Tensor, mask: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = inputs.size(0)
        pos_embedding = self.positional_encoding(inputs)
        pos_embedding = pos_embedding.repeat(batch_size, 1, 1)

        inputs = self.layer_norm(inputs)
        outputs, attn = self.attention(
            inputs, inputs, inputs, pos_embedding=pos_embedding, mask=mask
        )

        return self.dropout(outputs), attn


class ConformerBlock(nn.Module):
    def __init__(
        self,
        encoder_dim: int = 512,
        attention_type: str = "mhsa",
        num_attention_heads: int = 8,
        mamba_d_state: int = 16,
        mamba_d_conv: int = 4,
        mamba_expand: int = 2,
        mamba_bidirectional: bool = True,
        feed_forward_expansion_factor: int = 4,
        conv_expansion_factor: int = 2,
        feed_forward_dropout_p: float = 0.1,
        attention_dropout_p: float = 0.1,
        conv_dropout_p: float = 0.1,
        conv_kernel_size: int = 31,
        half_step_residual: bool = True,
        transformer_style: bool = False,
    ):
        super(ConformerBlock, self).__init__()

        self.transformer_style = transformer_style
        self.attention_type = attention_type

        if half_step_residual and not transformer_style:
            self.feed_forward_residual_factor = 0.5
        else:
            self.feed_forward_residual_factor = 1

        assert attention_type in ["mhsa", "mamba"]
        if attention_type == "mhsa":
            attention = MultiHeadedSelfAttentionModule(
                d_model=encoder_dim,
                num_heads=num_attention_heads,
                dropout_p=attention_dropout_p,
            )

        self.ffn_1 = FeedForwardModule(
            encoder_dim=encoder_dim,
            expansion_factor=feed_forward_expansion_factor,
            dropout_p=feed_forward_dropout_p,
        )
        self.attention = attention
        if not transformer_style:
            self.conv = ConformerConvModule(
                in_channels=encoder_dim,
                kernel_size=conv_kernel_size,
                expansion_factor=conv_expansion_factor,
                dropout_p=conv_dropout_p,
            )
            self.ffn_2 = FeedForwardModule(
                encoder_dim=encoder_dim,
                expansion_factor=feed_forward_expansion_factor,
                dropout_p=feed_forward_dropout_p,
            )
        self.layernorm = nn.LayerNorm(encoder_dim)

    def forward(
        self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, Dict[str, Union[torch.Tensor, None]]]:
        # FFN 1
        ffn_1_out = self.ffn_1(x)
        x = ffn_1_out * self.feed_forward_residual_factor + x

        # Attention
        if not isinstance(self.attention, MultiHeadedSelfAttentionModule):
            # MAMBA
            attn_out = self.attention(x)
            attn = None
        else:
            attn_out, attn = self.attention(x)
        x = attn_out + x

        if self.transformer_style:
            x = self.layernorm(x)
            return x, {
                "ffn_1": ffn_1_out,
                "attn": attn,
                "conv": None,
                "ffn_2": None,
            }

        # Convolution
        conv_out = self.conv(x)
        x = conv_out + x

        # FFN 2
        ffn_2_out = self.ffn_2(x)
        x = ffn_2_out * self.feed_forward_residual_factor + x
        x = self.layernorm(x)

        other = {
            "ffn_1": ffn_1_out,
            "attn": attn,
            "conv": conv_out,
            "ffn_2": ffn_2_out,
        }

        return x, other


class ConformerEncoder(nn.Module):
    def __init__(self, cfg):
        super(ConformerEncoder, self).__init__()

        self.cfg = cfg
        self.framewise_subsample = None
        self.patchwise_subsample = None
        self.framewise_in_proj = None
        self.patchwise_in_proj = None
        assert (
            cfg.use_framewise_subsample or cfg.use_patchwise_subsample
        ), "At least one subsampling method should be used"
        if cfg.use_framewise_subsample:
            self.framewise_subsample = FramewiseConv2dSubampling(
                out_channels=cfg.conv_subsample_channels,
                subsample_rate=cfg.conv_subsample_rate,
            )
            self.framewise_in_proj = nn.Sequential(
                Linear(
                    cfg.conv_subsample_channels * (((cfg.input_dim - 1) // 2 - 1) // 2),
                    cfg.encoder_dim,
                ),
                nn.Dropout(p=cfg.input_dropout_p),
            )
        if cfg.use_patchwise_subsample:
            self.patchwise_subsample = PatchwiseConv2dSubampling(
                mel_dim=cfg.input_dim,
                out_channels=cfg.conv_subsample_channels,
                patch_size_time=cfg.patch_size_time,
                patch_size_freq=cfg.patch_size_freq,
            )
            self.patchwise_in_proj = nn.Sequential(
                Linear(
                    cfg.conv_subsample_channels,
                    cfg.encoder_dim,
                ),
                nn.Dropout(p=cfg.input_dropout_p),
            )
            assert not cfg.use_framewise_subsample or (
                cfg.conv_subsample_rate == self.patchwise_subsample.subsample_rate
            ), (
                f"conv_subsample_rate ({cfg.conv_subsample_rate}) != patchwise_subsample.subsample_rate"
                f"({self.patchwise_subsample.subsample_rate})"
            )

        self.framewise_norm, self.patchwise_norm = None, None
        if getattr(cfg, "subsample_normalization", False):
            if cfg.use_framewise_subsample:
                self.framewise_norm = nn.LayerNorm(cfg.encoder_dim)
            if cfg.use_patchwise_subsample:
                self.patchwise_norm = nn.LayerNorm(cfg.encoder_dim)

        self.conv_pos = None
        if getattr(cfg, "conv_pos", False):
            num_pos_layers = cfg.conv_pos_depth
            k = max(3, cfg.conv_pos_width // num_pos_layers)
            self.conv_pos = nn.Sequential(
                TransposeLast(),
                *[
                    nn.Sequential(
                        nn.Conv1d(
                            cfg.encoder_dim,
                            cfg.encoder_dim,
                            kernel_size=k,
                            padding=k // 2,
                            groups=cfg.conv_pos_groups,
                        ),
                        SamePad(k),
                        TransposeLast(),
                        nn.LayerNorm(cfg.encoder_dim, elementwise_affine=False),
                        TransposeLast(),
                        nn.GELU(),
                    )
                    for _ in range(num_pos_layers)
                ],
                TransposeLast(),
            )
            self.conv_pos_post_ln = nn.LayerNorm(cfg.encoder_dim)

        self.layers = nn.ModuleList(
            [
                ConformerBlock(
                    encoder_dim=cfg.encoder_dim,
                    attention_type=cfg.attention_type,
                    num_attention_heads=cfg.num_attention_heads,
                    mamba_d_state=cfg.mamba_d_state,
                    mamba_d_conv=cfg.mamba_d_conv,
                    mamba_expand=cfg.mamba_expand,
                    mamba_bidirectional=cfg.mamba_bidirectional,
                    feed_forward_expansion_factor=cfg.feed_forward_expansion_factor,
                    conv_expansion_factor=cfg.conv_expansion_factor,
                    feed_forward_dropout_p=cfg.feed_forward_dropout_p,
                    attention_dropout_p=cfg.attention_dropout_p,
                    conv_dropout_p=cfg.conv_dropout_p,
                    conv_kernel_size=cfg.conv_kernel_size,
                    half_step_residual=cfg.half_step_residual,
                    transformer_style=getattr(cfg, "transformer_style", False),
                )
                for _ in range(cfg.num_layers)
            ]
        )

    def count_parameters(self) -> int:
        """Count parameters of encoder"""
        return sum([p.numel() for p in self.parameters() if p.requires_grad])

    def update_dropout(self, dropout_p: float) -> None:
        """Update dropout probability of encoder"""
        for name, child in self.named_children():
            if isinstance(child, nn.Dropout):
                child.p = dropout_p

    def forward(
        self,
        inputs: torch.Tensor,
        input_lengths: Optional[torch.Tensor] = None,
        return_hidden: bool = False,
        freeze_input_layers: bool = False,
        target_layer: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, List[torch.Tensor]]]:
        if input_lengths is None:
            input_lengths = torch.full(
                (inputs.size(0),),
                inputs.size(1),
                dtype=torch.long,
                device=inputs.device,
            )

        with torch.no_grad() if freeze_input_layers else contextlib.ExitStack():
            frame_feat, patch_feat = None, None
            if self.framewise_subsample is not None:
                frame_feat, frame_lengths = self.framewise_subsample(
                    inputs, input_lengths
                )
                frame_feat = self.framewise_in_proj(frame_feat)
                if self.framewise_norm is not None:
                    frame_feat = self.framewise_norm(frame_feat)

            if self.patchwise_subsample is not None:
                patch_feat, patch_lengths = self.patchwise_subsample(
                    inputs, input_lengths
                )
                patch_feat = self.patchwise_in_proj(patch_feat)
                if self.patchwise_norm is not None:
                    patch_feat = self.patchwise_norm(patch_feat)

            if frame_feat is not None and patch_feat is not None:
                min_len = min(frame_feat.size(1), patch_feat.size(1))
                frame_feat = frame_feat[:, :min_len]
                patch_feat = patch_feat[:, :min_len]

                features = frame_feat + patch_feat
                output_lengths = (
                    frame_lengths
                    if frame_lengths.max().item() < patch_lengths.max().item()
                    else patch_lengths
                )
            elif frame_feat is not None:
                features = frame_feat
                output_lengths = frame_lengths
            else:
                features = patch_feat
                output_lengths = patch_lengths

        if self.conv_pos is not None:
            features = features + self.conv_pos(features)
            features = self.conv_pos_post_ln(features)

        layer_results = defaultdict(list)

        outputs = features
        for i, layer in enumerate(self.layers):
            outputs, other = layer(outputs)
            if return_hidden:
                layer_results["hidden_states"].append(outputs)
                for k, v in other.items():
                    layer_results[k].append(v)

            if target_layer is not None and i == target_layer:
                break

        return outputs, output_lengths, layer_results