--- base_model: - deepseek-ai/Janus-Pro-7B --- # MISHANM/deepseek-ai_janus-Pro-7B-fp16 The MISHANM/deepseek-ai_janus-Pro-7B-fp16 model is the multimodal understanding and image generation model . It is designed to generate Image to text and high-quality images from textual prompts. ## Model Details 1. Language: English 2. Tasks: Imgae to Text & Text to Image Generation ### Model Example output This is the model inference output: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66851b2c4461866b07738832/5RotptYgkmhInup-jseVz.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66851b2c4461866b07738832/u7ms70_UQnq64Ze_EKtzF.png) ## How to Get Started with the Model ```shell git clone https://github.com/deepseek-ai/Janus.git cd Janus pip install -e . ``` ## Use the code below to get started with the model. ### Multimodal Understanding(Image to Text). Using Gradio ```python import gradio as gr import torch from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from janus.utils.io import load_pil_images import base64 from io import BytesIO def pil_image_to_base64(pil_image): buffered = BytesIO() pil_image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return f"data:image/png;base64,{img_str}" # Initialize the processor and model model_path = "MISHANM/deepseek-ai_janus-Pro-7B-fp16" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() def multimodal_understanding(image, question): # Convert PIL Image to base64 string image_base64 = pil_image_to_base64(image) # Prepare the conversation conversation = [ { "role": "<|User|>", "content": f"\n{question}", "images": [image_base64], }, {"role": "<|Assistant|>", "content": ""}, ] # Load images and prepare inputs pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(vl_gpt.device) # Run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # Run the model to get the response outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True, ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) return answer # Gradio interface interface = gr.Interface( fn=multimodal_understanding, inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")], outputs="text", title="Multimodal Understanding ", description="Upload an image and ask a question about it." ) interface.launch(share=True) ``` ### Text to Image Generation. ```python import os import gradio as gr import PIL.Image import torch import numpy as np from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor # Initialize the processor and model model_path = "MISHANM/deepseek-ai_janus-Pro-7B-fp16" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() @torch.inference_mode() def generate_image(prompt_text, parallel_size=1): # Prepare the conversation conversation = [ { "role": "<|User|>", "content": prompt_text, }, {"role": "<|Assistant|>", "content": ""}, ] sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) prompt = sft_format + vl_chat_processor.image_start_tag input_ids = vl_chat_processor.tokenizer.encode(prompt) input_ids = torch.LongTensor(input_ids) tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() for i in range(parallel_size*2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = vl_chat_processor.pad_id inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) image_token_num_per_image = 576 img_size = 384 patch_size = 16 generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() for i in range(image_token_num_per_image): outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) hidden_states = outputs.last_hidden_state logits = vl_gpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] cfg_weight = 5 logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) probs = torch.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) dec = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) visual_img[:, :, :] = dec return PIL.Image.fromarray(visual_img[0]) # Create Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs="image", title="Text-to-Image Generation", description="Enter a text prompt to generate an image." ) interface.launch(share=True) ``` ## Uses ### Direct Use The model is designed to convert images into text and text into images based on textual descriptions. It is useful for creative projects, content creation, and artistic exploration ### Out-of-Scope Use The model is not designed to generate images containing explicit or harmful content. It may also struggle with highly abstract or nonsensical prompts. ## Bias, Risks, and Limitations The model may inherit biases from its training data, potentially producing stereotypical or biased images based on the given prompts. ### Recommendations Users should be mindful of potential biases and limitations. It is advisable to review the generated content for accuracy and appropriateness. ## Citation Information ``` @misc{MISHANM/deepseek-ai_janus-Pro-7B-fp16, author = {Mishan Maurya}, title = {Introducing Image to Text & Text to Image Generation model}, year = {2025}, publisher = {Hugging Face}, journal = {Hugging Face repository}, } ```