fix bug vllm integration
Browse files- vllm_plugin_meralion/README.md +153 -31
- vllm_plugin_meralion/change_log.md +5 -0
- vllm_plugin_meralion/{set_up.py → setup.py} +1 -1
- vllm_plugin_meralion/vllm_plugin_meralion/__init__.py +0 -0
- vllm_plugin_meralion/vllm_plugin_meralion/configuration_meralion.py +0 -505
- vllm_plugin_meralion/vllm_plugin_meralion/modeling_meralion.py +0 -1306
- vllm_plugin_meralion/vllm_plugin_meralion/modeling_text_decoder.py +0 -1319
- vllm_plugin_meralion/vllm_plugin_meralion/vllm_meralion.py +91 -18
vllm_plugin_meralion/README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
## MERaLiON-AudioLLM vLLM Serving
|
2 |
|
3 |
> [!IMPORTANT]
|
4 |
-
> MERaLiON-AudioLLM is trained on
|
5 |
|
6 |
### Set up Environment
|
7 |
|
8 |
-
MERaLiON-AudioLLM requires vLLM version `
|
9 |
|
10 |
```bash
|
11 |
-
pip install vllm==
|
12 |
pip install transformers==4.46.3
|
13 |
```
|
14 |
|
@@ -30,35 +30,27 @@ import torch
|
|
30 |
from vllm import ModelRegistry, LLM, SamplingParams
|
31 |
from vllm.assets.audio import AudioAsset
|
32 |
|
33 |
-
|
34 |
-
model_name = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
-
|
44 |
-
audio_in_prompt = "Given the following audio context: <SpeechHere>\n\n"
|
45 |
-
|
46 |
-
prompt = ("<start_of_turn>user\n"
|
47 |
-
f"{audio_in_prompt}Text instruction: {question}<end_of_turn>\n"
|
48 |
-
"<start_of_turn>model\n")
|
49 |
-
stop_token_ids = None
|
50 |
-
return llm, prompt, stop_token_ids
|
51 |
|
52 |
audio_asset = AudioAsset("mary_had_lamb")
|
|
|
53 |
question= "Please trancribe this speech."
|
|
|
54 |
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
# We set temperature to 0.2 so that outputs can be different
|
58 |
-
# even when all prompts are identical when running batch inference.
|
59 |
sampling_params = SamplingParams(
|
60 |
-
temperature=
|
61 |
-
top_p=
|
62 |
top_k=50,
|
63 |
repetition_penalty=1.1,
|
64 |
seed=42,
|
@@ -86,7 +78,7 @@ Here is an example to start the server via the `vllm serve` command.
|
|
86 |
```bash
|
87 |
export HF_TOKEN=<your-hf-token>
|
88 |
|
89 |
-
vllm serve MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --tokenizer MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --
|
90 |
```
|
91 |
|
92 |
To call the server, you can use the [official OpenAI client](https://github.com/openai/openai-python):
|
@@ -147,8 +139,8 @@ client, model_name = get_client(base_url="http://localhost:8000/v1")
|
|
147 |
generation_parameters = dict(
|
148 |
model=model_name,
|
149 |
max_completion_tokens=1024,
|
150 |
-
temperature=
|
151 |
-
top_p=
|
152 |
extra_body={
|
153 |
"repetition_penalty": 1.1,
|
154 |
"top_k": 50,
|
@@ -178,8 +170,138 @@ curl http://localhost:8000/v1/chat/completions \
|
|
178 |
}
|
179 |
],
|
180 |
"max_completion_tokens": 1024,
|
181 |
-
"temperature":
|
182 |
-
"top_p":
|
183 |
"seed": 42
|
184 |
}'
|
185 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
## MERaLiON-AudioLLM vLLM Serving
|
2 |
|
3 |
> [!IMPORTANT]
|
4 |
+
> MERaLiON-AudioLLM is trained on 30 second audios. This vllm integration supports at most 4mins audio input.
|
5 |
|
6 |
### Set up Environment
|
7 |
|
8 |
+
MERaLiON-AudioLLM requires vLLM version `6.4.post1` and transformers `4.46.3`
|
9 |
|
10 |
```bash
|
11 |
+
pip install vllm==6.4.post1
|
12 |
pip install transformers==4.46.3
|
13 |
```
|
14 |
|
|
|
30 |
from vllm import ModelRegistry, LLM, SamplingParams
|
31 |
from vllm.assets.audio import AudioAsset
|
32 |
|
33 |
+
model_name = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"
|
|
|
34 |
|
35 |
+
llm = LLM(model=model_name,
|
36 |
+
tokenizer=model_name,
|
37 |
+
limit_mm_per_prompt={"audio": 1},
|
38 |
+
trust_remote_code=True,
|
39 |
+
dtype=torch.bfloat16
|
40 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
audio_asset = AudioAsset("mary_had_lamb")
|
43 |
+
|
44 |
question= "Please trancribe this speech."
|
45 |
+
audio_in_prompt = "Given the following audio context: <SpeechHere>\n\n"
|
46 |
|
47 |
+
prompt = ("<start_of_turn>user\n"
|
48 |
+
f"{audio_in_prompt}Text instruction: {question}<end_of_turn>\n"
|
49 |
+
"<start_of_turn>model\n")
|
50 |
|
|
|
|
|
51 |
sampling_params = SamplingParams(
|
52 |
+
temperature=1,
|
53 |
+
top_p=9,
|
54 |
top_k=50,
|
55 |
repetition_penalty=1.1,
|
56 |
seed=42,
|
|
|
78 |
```bash
|
79 |
export HF_TOKEN=<your-hf-token>
|
80 |
|
81 |
+
vllm serve MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --tokenizer MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION --trust-remote-code --dtype bfloat16 --port 8000
|
82 |
```
|
83 |
|
84 |
To call the server, you can use the [official OpenAI client](https://github.com/openai/openai-python):
|
|
|
139 |
generation_parameters = dict(
|
140 |
model=model_name,
|
141 |
max_completion_tokens=1024,
|
142 |
+
temperature=1,
|
143 |
+
top_p=9,
|
144 |
extra_body={
|
145 |
"repetition_penalty": 1.1,
|
146 |
"top_k": 50,
|
|
|
170 |
}
|
171 |
],
|
172 |
"max_completion_tokens": 1024,
|
173 |
+
"temperature": 1,
|
174 |
+
"top_p": 9,
|
175 |
"seed": 42
|
176 |
}'
|
177 |
+
```
|
178 |
+
|
179 |
+
|
180 |
+
### Inference Performance Benchmark
|
181 |
+
|
182 |
+
We report average **Time To First Token** (**TTFT**, unit: ms) together with **Inter-Token Latency** (**ITL**, unit: ms) with vLLM instance running on H100 and A100 GPU respectively.
|
183 |
+
|
184 |
+
Input: 120 speech recognition prompts for each input audio length and concurrency combination.\
|
185 |
+
Output: The corresponding output length of these prompts.
|
186 |
+
|
187 |
+
|
188 |
+
<p style="text-align: center;"><strong>Single NVIDIA H100 GPU (80GiB GPU memory)</strong></p>
|
189 |
+
|
190 |
+
<table style="margin: 0px auto;">
|
191 |
+
<thead>
|
192 |
+
<tr>
|
193 |
+
<th>Input Audio Length</th>
|
194 |
+
<th style="text-align: center;" colspan="2">30s</th>
|
195 |
+
<th style="text-align: center;" colspan="2">1min</th>
|
196 |
+
<th style="text-align: center;" colspan="2">2mins</th>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<th>Concurrent requests</th>
|
200 |
+
<th>TTFT (ms)</th>
|
201 |
+
<th>ITL (ms)</th>
|
202 |
+
<th>TTFT (ms)</th>
|
203 |
+
<th>ITL (ms)</th>
|
204 |
+
<th>TTFT (ms)</th>
|
205 |
+
<th>ITL (ms)</th>
|
206 |
+
</tr>
|
207 |
+
</thead>
|
208 |
+
<tbody>
|
209 |
+
<tr>
|
210 |
+
<td>1</td>
|
211 |
+
<td>85.8</td>
|
212 |
+
<td>9.9</td>
|
213 |
+
<td>126.4</td>
|
214 |
+
<td>9.6</td>
|
215 |
+
<td>214.5</td>
|
216 |
+
<td>9.7</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td>4</td>
|
220 |
+
<td>96.9</td>
|
221 |
+
<td>11.4</td>
|
222 |
+
<td>159.6</td>
|
223 |
+
<td>11.1</td>
|
224 |
+
<td>258.1</td>
|
225 |
+
<td>11.2</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td>8</td>
|
229 |
+
<td>109.6</td>
|
230 |
+
<td>13.0</td>
|
231 |
+
<td>206.5</td>
|
232 |
+
<td>12.7</td>
|
233 |
+
<td>261.9</td>
|
234 |
+
<td>13.0</td>
|
235 |
+
</tr>
|
236 |
+
<tr>
|
237 |
+
<td>16</td>
|
238 |
+
<td>149.9</td>
|
239 |
+
<td>16.3</td>
|
240 |
+
<td>236.7</td>
|
241 |
+
<td>16.2</td>
|
242 |
+
<td>299.0</td>
|
243 |
+
<td>16.8</td>
|
244 |
+
</tr>
|
245 |
+
</tbody>
|
246 |
+
</table>
|
247 |
+
|
248 |
+
<p style="text-align: center;"><strong>Single NVIDIA A100 GPU (40GiB GPU memory)</strong></p>
|
249 |
+
|
250 |
+
<table style="margin: 0px auto;">
|
251 |
+
<thead>
|
252 |
+
<tr>
|
253 |
+
<th>Input Audio Length</th>
|
254 |
+
<th style="text-align: center;" colspan="2">30s</th>
|
255 |
+
<th style="text-align: center;" colspan="2">1min</th>
|
256 |
+
<th style="text-align: center;" colspan="2">2mins</th>
|
257 |
+
</tr>
|
258 |
+
<tr>
|
259 |
+
<th>Concurrent requests</th>
|
260 |
+
<th>TTFT (ms)</th>
|
261 |
+
<th>ITL (ms)</th>
|
262 |
+
<th>TTFT (ms)</th>
|
263 |
+
<th>ITL (ms)</th>
|
264 |
+
<th>TTFT (ms)</th>
|
265 |
+
<th>ITL (ms)</th>
|
266 |
+
</tr>
|
267 |
+
</thead>
|
268 |
+
<tbody>
|
269 |
+
<tr>
|
270 |
+
<td>1</td>
|
271 |
+
<td>162.6</td>
|
272 |
+
<td>18.0</td>
|
273 |
+
<td>195.0</td>
|
274 |
+
<td>18.3</td>
|
275 |
+
<td>309.9</td>
|
276 |
+
<td>18.6</td>
|
277 |
+
</tr>
|
278 |
+
<tr>
|
279 |
+
<td>4</td>
|
280 |
+
<td>159.1</td>
|
281 |
+
<td>21.1</td>
|
282 |
+
<td>226.9</td>
|
283 |
+
<td>21.2</td>
|
284 |
+
<td>329.5</td>
|
285 |
+
<td>21.6</td>
|
286 |
+
</tr>
|
287 |
+
<tr>
|
288 |
+
<td>8</td>
|
289 |
+
<td>176.5</td>
|
290 |
+
<td>25.2</td>
|
291 |
+
<td>305.4</td>
|
292 |
+
<td>24.8</td>
|
293 |
+
<td>352.5</td>
|
294 |
+
<td>25.5</td>
|
295 |
+
</tr>
|
296 |
+
<tr>
|
297 |
+
<td>16</td>
|
298 |
+
<td>196.0</td>
|
299 |
+
<td>32.0</td>
|
300 |
+
<td>329.4</td>
|
301 |
+
<td>31.9</td>
|
302 |
+
<td>414.7</td>
|
303 |
+
<td>33.4</td>
|
304 |
+
</tr>
|
305 |
+
</tbody>
|
306 |
+
</table>
|
307 |
+
|
vllm_plugin_meralion/change_log.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 0.3.0
|
2 |
+
- Optimize audio processing code
|
3 |
+
- Fix bug about huggingface attention implementation autoset. Better compatibility with transformers > 4.45.2
|
4 |
+
- Support LoRA adaptors on the text decoder module.
|
5 |
+
- Support embedding task
|
vllm_plugin_meralion/{set_up.py → setup.py}
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
from setuptools import setup
|
2 |
|
3 |
setup(name='vllm_plugin_meralion',
|
4 |
-
version='0.
|
5 |
packages=['vllm_plugin_meralion'],
|
6 |
entry_points={
|
7 |
'vllm.general_plugins':
|
|
|
1 |
from setuptools import setup
|
2 |
|
3 |
setup(name='vllm_plugin_meralion',
|
4 |
+
version='0.3.0',
|
5 |
packages=['vllm_plugin_meralion'],
|
6 |
entry_points={
|
7 |
'vllm.general_plugins':
|
vllm_plugin_meralion/vllm_plugin_meralion/__init__.py
CHANGED
File without changes
|
vllm_plugin_meralion/vllm_plugin_meralion/configuration_meralion.py
DELETED
@@ -1,505 +0,0 @@
|
|
1 |
-
"""MERaLiON AudioLLM model configuration"""
|
2 |
-
|
3 |
-
from collections import OrderedDict
|
4 |
-
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
|
5 |
-
|
6 |
-
from transformers.configuration_utils import PretrainedConfig
|
7 |
-
from transformers.onnx import OnnxConfig
|
8 |
-
from transformers.utils import logging
|
9 |
-
|
10 |
-
|
11 |
-
if TYPE_CHECKING:
|
12 |
-
from transformers.feature_extraction_utils import FeatureExtractionMixin
|
13 |
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
14 |
-
from transformers.utils import TensorType
|
15 |
-
|
16 |
-
|
17 |
-
logger = logging.get_logger(__name__)
|
18 |
-
|
19 |
-
|
20 |
-
# fmt: off
|
21 |
-
NON_SPEECH_TOKENS = [
|
22 |
-
1, 2, 7, 8, 9, 10, 14, 25,
|
23 |
-
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
24 |
-
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
|
25 |
-
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
|
26 |
-
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
|
27 |
-
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
|
28 |
-
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
|
29 |
-
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
|
30 |
-
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
|
31 |
-
]
|
32 |
-
NON_SPEECH_TOKENS_MULTI = [
|
33 |
-
1, 2, 7, 8, 9, 10, 14, 25,
|
34 |
-
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
|
35 |
-
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
|
36 |
-
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
|
37 |
-
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
|
38 |
-
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
|
39 |
-
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
|
40 |
-
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
|
41 |
-
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
|
42 |
-
]
|
43 |
-
# fmt: on
|
44 |
-
|
45 |
-
# Copied from transformers.models.whisper.configuration_whisper.WhisperConfig
|
46 |
-
class MERaLiONSpeechConfig(PretrainedConfig):
|
47 |
-
r"""
|
48 |
-
This is the configuration class to store the configuration of a [`MERaLiONSpeechModel`]. It is used to instantiate a
|
49 |
-
MERaLiONSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
50 |
-
with the defaults will yield a similar configuration to that of the MERaLiONSpeech
|
51 |
-
[openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
|
52 |
-
|
53 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
54 |
-
documentation from [`PretrainedConfig`] for more information.
|
55 |
-
|
56 |
-
|
57 |
-
Args:
|
58 |
-
vocab_size (`int`, *optional*, defaults to 51865):
|
59 |
-
Vocabulary size of the MERaLiONSpeech model. Defines the number of different tokens that can be represented by the
|
60 |
-
`decoder_input_ids` passed when calling [`MERaLiONSpeechModel`]
|
61 |
-
num_mel_bins (`int`, *optional*, defaults to 80):
|
62 |
-
Number of mel features used per input features. Should correspond to the value used in the
|
63 |
-
`MERaLiONSpeechProcessor` class.
|
64 |
-
encoder_layers (`int`, *optional*, defaults to 4):
|
65 |
-
Number of encoder layers.
|
66 |
-
decoder_layers (`int`, *optional*, defaults to 4):
|
67 |
-
Number of decoder layers.
|
68 |
-
encoder_attention_heads (`int`, *optional*, defaults to 6):
|
69 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
70 |
-
decoder_attention_heads (`int`, *optional*, defaults to 6):
|
71 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
72 |
-
encoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
73 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
|
74 |
-
decoder_ffn_dim (`int`, *optional*, defaults to 1536):
|
75 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
76 |
-
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
77 |
-
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
78 |
-
for more details.
|
79 |
-
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
80 |
-
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
81 |
-
for more details.
|
82 |
-
decoder_start_token_id (`int`, *optional*, defaults to 50257):
|
83 |
-
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
|
84 |
-
are provided to the `generate` function. It is used to guide the model`s generation process depending on
|
85 |
-
the task.
|
86 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
87 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
88 |
-
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
89 |
-
Whether the model is used as an encoder/decoder or not.
|
90 |
-
activation_function (`str`, *optional*, defaults to `"gelu"`):
|
91 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
92 |
-
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
93 |
-
d_model (`int`, *optional*, defaults to 384):
|
94 |
-
Dimensionality of the layers.
|
95 |
-
dropout (`float`, *optional*, defaults to 0.1):
|
96 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
97 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
98 |
-
The dropout ratio for the attention probabilities.
|
99 |
-
activation_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
-
The dropout ratio for activations inside the fully connected layer.
|
101 |
-
init_std (`float`, *optional*, defaults to 0.02):
|
102 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
103 |
-
scale_embedding (`bool`, *optional*, defaults to False):
|
104 |
-
Scale embeddings by diving by sqrt(d_model).
|
105 |
-
max_source_positions (`int`, *optional*, defaults to 1500):
|
106 |
-
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
107 |
-
max_target_positions (`int`, *optional*, defaults to 448):
|
108 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
109 |
-
just in case (e.g., 512 or 1024 or 2048).
|
110 |
-
pad_token_id (`int`, *optional*, defaults to 50256):
|
111 |
-
Padding token id.
|
112 |
-
bos_token_id (`int`, *optional*, defaults to 50256):
|
113 |
-
Begin of stream token id.
|
114 |
-
eos_token_id (`int`, *optional*, defaults to 50256):
|
115 |
-
End of stream token id.
|
116 |
-
suppress_tokens (`List[int]`, *optional*):
|
117 |
-
A list containing the non-speech tokens that will be used by the logit processor in the `generate`
|
118 |
-
function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
|
119 |
-
`multilingual` model.
|
120 |
-
begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
|
121 |
-
A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
|
122 |
-
the token for `" "` (`blank_token_id`) and the `eos_token_id`
|
123 |
-
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
|
124 |
-
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
|
125 |
-
instance of [`MERaLiONSpeechForAudioClassification`].
|
126 |
-
classifier_proj_size (`int`, *optional*, defaults to 256):
|
127 |
-
Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
|
128 |
-
instance of [`MERaLiONSpeechForAudioClassification`].
|
129 |
-
apply_spec_augment (`bool`, *optional*, defaults to `False`):
|
130 |
-
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
|
131 |
-
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
|
132 |
-
Recognition](https://arxiv.org/abs/1904.08779).
|
133 |
-
mask_time_prob (`float`, *optional*, defaults to 0.05):
|
134 |
-
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
|
135 |
-
procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
|
136 |
-
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
|
137 |
-
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
|
138 |
-
actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
|
139 |
-
mask_time_length (`int`, *optional*, defaults to 10):
|
140 |
-
Length of vector span along the time axis.
|
141 |
-
mask_time_min_masks (`int`, *optional*, defaults to 2),:
|
142 |
-
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
|
143 |
-
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
|
144 |
-
mask_time_min_masks''
|
145 |
-
mask_feature_prob (`float`, *optional*, defaults to 0.0):
|
146 |
-
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
|
147 |
-
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
|
148 |
-
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
|
149 |
-
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
|
150 |
-
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
|
151 |
-
True`.
|
152 |
-
mask_feature_length (`int`, *optional*, defaults to 10):
|
153 |
-
Length of vector span along the feature axis.
|
154 |
-
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
|
155 |
-
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
|
156 |
-
step, irrespectively of `mask_feature_prob`. Only relevant if
|
157 |
-
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
|
158 |
-
median_filter_width (`int`, *optional*, defaults to 7):
|
159 |
-
Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
|
160 |
-
Should be an odd number.
|
161 |
-
"""
|
162 |
-
|
163 |
-
model_type = "meralion_speech_encoder"
|
164 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
165 |
-
attribute_map = {
|
166 |
-
"num_key_value_heads": "encoder_attention_heads",
|
167 |
-
"num_attention_heads": "encoder_attention_heads",
|
168 |
-
"hidden_size": "d_model",
|
169 |
-
}
|
170 |
-
|
171 |
-
def __init__(
|
172 |
-
self,
|
173 |
-
vocab_size=51865,
|
174 |
-
num_mel_bins=80,
|
175 |
-
encoder_layers=4,
|
176 |
-
encoder_attention_heads=6,
|
177 |
-
decoder_layers=4,
|
178 |
-
decoder_attention_heads=6,
|
179 |
-
decoder_ffn_dim=1536,
|
180 |
-
encoder_ffn_dim=1536,
|
181 |
-
encoder_layerdrop=0.0,
|
182 |
-
decoder_layerdrop=0.0,
|
183 |
-
decoder_start_token_id=50257,
|
184 |
-
use_cache=True,
|
185 |
-
is_encoder_decoder=True,
|
186 |
-
activation_function="gelu",
|
187 |
-
d_model=384,
|
188 |
-
dropout=0.0,
|
189 |
-
attention_dropout=0.0,
|
190 |
-
activation_dropout=0.0,
|
191 |
-
init_std=0.02,
|
192 |
-
scale_embedding=False,
|
193 |
-
max_source_positions=1500,
|
194 |
-
max_target_positions=448,
|
195 |
-
pad_token_id=50256,
|
196 |
-
bos_token_id=50256,
|
197 |
-
eos_token_id=50256,
|
198 |
-
suppress_tokens=None,
|
199 |
-
begin_suppress_tokens=[220, 50256],
|
200 |
-
use_weighted_layer_sum=False,
|
201 |
-
classifier_proj_size=256,
|
202 |
-
apply_spec_augment=False,
|
203 |
-
mask_time_prob=0.05,
|
204 |
-
mask_time_length=10,
|
205 |
-
mask_time_min_masks=2,
|
206 |
-
mask_feature_prob=0.0,
|
207 |
-
mask_feature_length=10,
|
208 |
-
mask_feature_min_masks=0,
|
209 |
-
median_filter_width=7,
|
210 |
-
**kwargs,
|
211 |
-
):
|
212 |
-
self.vocab_size = vocab_size
|
213 |
-
self.num_mel_bins = num_mel_bins
|
214 |
-
self.d_model = d_model
|
215 |
-
self.encoder_layers = encoder_layers
|
216 |
-
self.encoder_attention_heads = encoder_attention_heads
|
217 |
-
self.decoder_layers = decoder_layers
|
218 |
-
self.decoder_attention_heads = decoder_attention_heads
|
219 |
-
self.decoder_ffn_dim = decoder_ffn_dim
|
220 |
-
self.encoder_ffn_dim = encoder_ffn_dim
|
221 |
-
self.dropout = dropout
|
222 |
-
self.attention_dropout = attention_dropout
|
223 |
-
self.activation_dropout = activation_dropout
|
224 |
-
self.activation_function = activation_function
|
225 |
-
self.init_std = init_std
|
226 |
-
self.encoder_layerdrop = encoder_layerdrop
|
227 |
-
self.decoder_layerdrop = decoder_layerdrop
|
228 |
-
self.use_cache = use_cache
|
229 |
-
self.num_hidden_layers = encoder_layers
|
230 |
-
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
231 |
-
self.max_source_positions = max_source_positions
|
232 |
-
self.max_target_positions = max_target_positions
|
233 |
-
|
234 |
-
# Audio Classification-specific parameters. Feel free to ignore for other classes.
|
235 |
-
self.classifier_proj_size = classifier_proj_size
|
236 |
-
self.use_weighted_layer_sum = use_weighted_layer_sum
|
237 |
-
|
238 |
-
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
239 |
-
self.apply_spec_augment = apply_spec_augment
|
240 |
-
self.mask_time_prob = mask_time_prob
|
241 |
-
self.mask_time_length = mask_time_length
|
242 |
-
self.mask_time_min_masks = mask_time_min_masks
|
243 |
-
self.mask_feature_prob = mask_feature_prob
|
244 |
-
self.mask_feature_length = mask_feature_length
|
245 |
-
self.mask_feature_min_masks = mask_feature_min_masks
|
246 |
-
|
247 |
-
self.median_filter_width = median_filter_width
|
248 |
-
|
249 |
-
super().__init__(
|
250 |
-
pad_token_id=pad_token_id,
|
251 |
-
bos_token_id=bos_token_id,
|
252 |
-
eos_token_id=eos_token_id,
|
253 |
-
is_encoder_decoder=is_encoder_decoder,
|
254 |
-
decoder_start_token_id=decoder_start_token_id,
|
255 |
-
suppress_tokens=suppress_tokens,
|
256 |
-
begin_suppress_tokens=begin_suppress_tokens,
|
257 |
-
**kwargs,
|
258 |
-
)
|
259 |
-
@property
|
260 |
-
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
261 |
-
common_inputs = OrderedDict(
|
262 |
-
[
|
263 |
-
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
|
264 |
-
]
|
265 |
-
)
|
266 |
-
if self.use_past:
|
267 |
-
common_inputs["decoder_input_ids"] = {0: "batch"}
|
268 |
-
else:
|
269 |
-
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
270 |
-
|
271 |
-
if self.use_past:
|
272 |
-
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
273 |
-
|
274 |
-
return common_inputs
|
275 |
-
|
276 |
-
def generate_dummy_inputs(
|
277 |
-
self,
|
278 |
-
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
|
279 |
-
batch_size: int = -1,
|
280 |
-
seq_length: int = -1,
|
281 |
-
is_pair: bool = False,
|
282 |
-
framework: Optional["TensorType"] = None,
|
283 |
-
sampling_rate: int = 22050,
|
284 |
-
time_duration: float = 5.0,
|
285 |
-
frequency: int = 220,
|
286 |
-
) -> Mapping[str, Any]:
|
287 |
-
dummy_inputs = OrderedDict()
|
288 |
-
encoder_inputs = OnnxConfig.generate_dummy_inputs(
|
289 |
-
self,
|
290 |
-
preprocessor=preprocessor.feature_extractor,
|
291 |
-
batch_size=batch_size,
|
292 |
-
framework=framework,
|
293 |
-
sampling_rate=sampling_rate,
|
294 |
-
time_duration=time_duration,
|
295 |
-
frequency=frequency,
|
296 |
-
)
|
297 |
-
encoder_sequence_length = encoder_inputs["input_features"].shape[2]
|
298 |
-
seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
|
299 |
-
|
300 |
-
decoder_inputs = super().generate_dummy_inputs(
|
301 |
-
preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
|
302 |
-
)
|
303 |
-
|
304 |
-
dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
|
305 |
-
dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
|
306 |
-
|
307 |
-
if "past_key_values" in decoder_inputs:
|
308 |
-
dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
|
309 |
-
|
310 |
-
return dummy_inputs
|
311 |
-
|
312 |
-
@property
|
313 |
-
def atol_for_validation(self) -> float:
|
314 |
-
return 1e-3
|
315 |
-
|
316 |
-
|
317 |
-
# Copied from transformers.models.gemma2.configuration_gemma2.Gemma2Config
|
318 |
-
class MERaLiONTextConfig(PretrainedConfig):
|
319 |
-
r"""
|
320 |
-
This is the configuration class to store the configuration of a [`MERaLiONTextModel`]. It is used to instantiate an MERaLiONText
|
321 |
-
model according to the specified arguments, defining the model architecture.
|
322 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
323 |
-
documentation from [`PretrainedConfig`] for more information.
|
324 |
-
Args:
|
325 |
-
vocab_size (`int`, *optional*, defaults to 256000):
|
326 |
-
Vocabulary size of the MERaLiONText model. Defines the number of different tokens that can be represented by the
|
327 |
-
`inputs_ids` passed when calling [`MERaLiONTextModel`]
|
328 |
-
hidden_size (`int`, *optional*, defaults to 3072):
|
329 |
-
Dimension of the hidden representations.
|
330 |
-
intermediate_size (`int`, *optional*, defaults to 24576):
|
331 |
-
Dimension of the MLP representations.
|
332 |
-
num_hidden_layers (`int`, *optional*, defaults to 28):
|
333 |
-
Number of hidden layers in the Transformer decoder.
|
334 |
-
num_attention_heads (`int`, *optional*, defaults to 16):
|
335 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
336 |
-
num_key_value_heads (`int`, *optional*, defaults to 16):
|
337 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
338 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
339 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
340 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
341 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
342 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
343 |
-
`num_attention_heads`.
|
344 |
-
head_dim (`int`, *optional*, defaults to 256):
|
345 |
-
The attention head dimension.
|
346 |
-
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
347 |
-
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
|
348 |
-
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
|
349 |
-
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
350 |
-
The maximum sequence length that this model might ever be used with.
|
351 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
352 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
353 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
354 |
-
The epsilon used by the rms normalization layers.
|
355 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
356 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
357 |
-
relevant if `config.is_decoder=True`.
|
358 |
-
pad_token_id (`int`, *optional*, defaults to 0):
|
359 |
-
Padding token id.
|
360 |
-
eos_token_id (`int`, *optional*, defaults to 1):
|
361 |
-
End of stream token id.
|
362 |
-
bos_token_id (`int`, *optional*, defaults to 2):
|
363 |
-
Beginning of stream token id.
|
364 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
365 |
-
Whether to tie weight embeddings
|
366 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
367 |
-
The base period of the RoPE embeddings.
|
368 |
-
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
369 |
-
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
370 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
371 |
-
The dropout ratio for the attention probabilities.
|
372 |
-
query_pre_attn_scalar (`float`, *optional*, defaults to 224): scaling factor used on the attention scores
|
373 |
-
sliding_window (`int`, *optional*, defaults to 4096): in MERaLiONText, every other layer uses sliding window attention. This is the
|
374 |
-
size of the sliding window.
|
375 |
-
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
|
376 |
-
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
|
377 |
-
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
|
378 |
-
"""
|
379 |
-
|
380 |
-
model_type = "meralion_text_decoder"
|
381 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
382 |
-
|
383 |
-
def __init__(
|
384 |
-
self,
|
385 |
-
vocab_size=256000,
|
386 |
-
hidden_size=3072,
|
387 |
-
intermediate_size=24576,
|
388 |
-
num_hidden_layers=28,
|
389 |
-
num_attention_heads=16,
|
390 |
-
num_key_value_heads=16,
|
391 |
-
head_dim=256,
|
392 |
-
hidden_activation="gelu_pytorch_tanh",
|
393 |
-
max_position_embeddings=8192,
|
394 |
-
initializer_range=0.02,
|
395 |
-
rms_norm_eps=1e-6,
|
396 |
-
use_cache=True,
|
397 |
-
pad_token_id=0,
|
398 |
-
eos_token_id=1,
|
399 |
-
bos_token_id=2,
|
400 |
-
tie_word_embeddings=True,
|
401 |
-
rope_theta=10000.0,
|
402 |
-
attention_bias=False,
|
403 |
-
attention_dropout=0.0,
|
404 |
-
query_pre_attn_scalar=224,
|
405 |
-
sliding_window=4096,
|
406 |
-
final_logit_softcapping=30.0,
|
407 |
-
attn_logit_softcapping=50.0,
|
408 |
-
cache_implementation="hybrid",
|
409 |
-
**kwargs,
|
410 |
-
):
|
411 |
-
super().__init__(
|
412 |
-
pad_token_id=pad_token_id,
|
413 |
-
bos_token_id=bos_token_id,
|
414 |
-
eos_token_id=eos_token_id,
|
415 |
-
tie_word_embeddings=tie_word_embeddings,
|
416 |
-
**kwargs,
|
417 |
-
)
|
418 |
-
self.vocab_size = vocab_size
|
419 |
-
self.max_position_embeddings = max_position_embeddings
|
420 |
-
self.hidden_size = hidden_size
|
421 |
-
self.intermediate_size = intermediate_size
|
422 |
-
self.num_hidden_layers = num_hidden_layers
|
423 |
-
self.num_attention_heads = num_attention_heads
|
424 |
-
self.head_dim = head_dim
|
425 |
-
self.num_key_value_heads = num_key_value_heads
|
426 |
-
self.initializer_range = initializer_range
|
427 |
-
self.rms_norm_eps = rms_norm_eps
|
428 |
-
self.use_cache = use_cache
|
429 |
-
self.rope_theta = rope_theta
|
430 |
-
self.attention_bias = attention_bias
|
431 |
-
self.attention_dropout = attention_dropout
|
432 |
-
self.hidden_activation = hidden_activation
|
433 |
-
self.query_pre_attn_scalar = query_pre_attn_scalar
|
434 |
-
self.sliding_window = sliding_window
|
435 |
-
self.final_logit_softcapping = final_logit_softcapping
|
436 |
-
self.attn_logit_softcapping = attn_logit_softcapping
|
437 |
-
self.cache_implementation = cache_implementation
|
438 |
-
|
439 |
-
|
440 |
-
class MERaLiONConfig(PretrainedConfig):
|
441 |
-
r"""
|
442 |
-
This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
|
443 |
-
MERaLiON model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
444 |
-
with the defaults will yield a similar configuration to that of the MERaLiON.
|
445 |
-
|
446 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
447 |
-
documentation from [`PretrainedConfig`] for more information.
|
448 |
-
|
449 |
-
Args:
|
450 |
-
audio_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
|
451 |
-
The config object or dictionary of the audio backbone.
|
452 |
-
text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
|
453 |
-
The config object or dictionary of the text backbone.
|
454 |
-
audio_token_index (`int`, *optional*, defaults to 151646):
|
455 |
-
The image token index to encode the image prompt.
|
456 |
-
"""
|
457 |
-
|
458 |
-
model_type = "meralion"
|
459 |
-
is_composition = False
|
460 |
-
|
461 |
-
def __init__(
|
462 |
-
self,
|
463 |
-
speech_config=None,
|
464 |
-
text_config=None,
|
465 |
-
speech_mlp_scale_factor=15,
|
466 |
-
speech_token_index=255999,
|
467 |
-
**kwargs,
|
468 |
-
):
|
469 |
-
|
470 |
-
if isinstance(speech_config, dict):
|
471 |
-
speech_config = MERaLiONSpeechConfig(**speech_config)
|
472 |
-
elif speech_config is None:
|
473 |
-
speech_config = MERaLiONSpeechConfig(
|
474 |
-
d_model=1280,
|
475 |
-
encoder_attention_heads=20,
|
476 |
-
encoder_ffn_dim=5120,
|
477 |
-
encoder_layerdrop=0.0,
|
478 |
-
encoder_layers=32,
|
479 |
-
num_mel_bins=128,
|
480 |
-
max_source_positions=1500,
|
481 |
-
scale_embedding=False,
|
482 |
-
activation_function="gelu",
|
483 |
-
)
|
484 |
-
|
485 |
-
self.speech_config = speech_config
|
486 |
-
|
487 |
-
if isinstance(text_config, dict):
|
488 |
-
text_config = MERaLiONTextConfig(**text_config)
|
489 |
-
elif text_config is None:
|
490 |
-
text_config = MERaLiONTextConfig()
|
491 |
-
|
492 |
-
self.text_config = text_config
|
493 |
-
|
494 |
-
self.speech_mlp_scale_factor = speech_mlp_scale_factor
|
495 |
-
self.speech_token_index = speech_token_index
|
496 |
-
|
497 |
-
self.sliding_window = self.text_config.sliding_window
|
498 |
-
self.hidden_size = self.text_config.hidden_size
|
499 |
-
self.num_attention_heads = self.text_config.num_attention_heads
|
500 |
-
self.num_hidden_layers = self.text_config.num_hidden_layers
|
501 |
-
self.num_key_value_heads = self.text_config.num_key_value_heads
|
502 |
-
self.head_dim = self.text_config.head_dim
|
503 |
-
self.intermediate_size = self.text_config.intermediate_size
|
504 |
-
|
505 |
-
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vllm_plugin_meralion/vllm_plugin_meralion/modeling_meralion.py
DELETED
@@ -1,1306 +0,0 @@
|
|
1 |
-
"""PyTorch MERaLiON AudioLLM model."""
|
2 |
-
|
3 |
-
import math
|
4 |
-
from dataclasses import dataclass
|
5 |
-
from typing import List, Optional, Tuple, Union
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torch.utils.checkpoint
|
9 |
-
from torch import nn
|
10 |
-
|
11 |
-
from transformers.activations import ACT2FN
|
12 |
-
from transformers.cache_utils import EncoderDecoderCache, StaticCache, HybridCache
|
13 |
-
from transformers.generation import GenerationMixin
|
14 |
-
from transformers.modeling_outputs import ModelOutput, BaseModelOutput
|
15 |
-
from transformers.modeling_utils import PreTrainedModel
|
16 |
-
from transformers.utils import (
|
17 |
-
add_start_docstrings,
|
18 |
-
add_start_docstrings_to_model_forward,
|
19 |
-
is_flash_attn_2_available,
|
20 |
-
is_flash_attn_greater_or_equal_2_10,
|
21 |
-
logging,
|
22 |
-
replace_return_docstrings,
|
23 |
-
)
|
24 |
-
|
25 |
-
from .configuration_meralion import MERaLiONConfig, MERaLiONSpeechConfig
|
26 |
-
from .modeling_text_decoder import MERaLiONTextForCausalLM
|
27 |
-
|
28 |
-
|
29 |
-
if is_flash_attn_2_available():
|
30 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
31 |
-
|
32 |
-
|
33 |
-
logger = logging.get_logger(__name__)
|
34 |
-
|
35 |
-
_CONFIG_FOR_DOC = "MERaLiONConfig"
|
36 |
-
|
37 |
-
|
38 |
-
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor:
|
39 |
-
"""Returns sinusoids for positional embedding"""
|
40 |
-
if channels % 2 != 0:
|
41 |
-
raise ValueError(
|
42 |
-
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
|
43 |
-
)
|
44 |
-
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
|
45 |
-
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
46 |
-
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1)
|
47 |
-
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)
|
48 |
-
|
49 |
-
|
50 |
-
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
51 |
-
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
52 |
-
"""
|
53 |
-
Shift input ids one token to the right.
|
54 |
-
"""
|
55 |
-
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
56 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
57 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
58 |
-
|
59 |
-
if pad_token_id is None:
|
60 |
-
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
61 |
-
# replace possible -100 values in labels by `pad_token_id`
|
62 |
-
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
63 |
-
|
64 |
-
return shifted_input_ids
|
65 |
-
|
66 |
-
|
67 |
-
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position
|
68 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
69 |
-
attention_mask: torch.Tensor,
|
70 |
-
sequence_length: int,
|
71 |
-
target_length: int,
|
72 |
-
dtype: torch.dtype,
|
73 |
-
device: torch.device,
|
74 |
-
min_dtype: float,
|
75 |
-
cache_position: torch.Tensor,
|
76 |
-
batch_size: int,
|
77 |
-
):
|
78 |
-
"""
|
79 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
80 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
attention_mask (`torch.Tensor`):
|
84 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
85 |
-
sequence_length (`int`):
|
86 |
-
The sequence length being processed.
|
87 |
-
target_length (`int`):
|
88 |
-
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
89 |
-
dtype (`torch.dtype`):
|
90 |
-
The dtype to use for the 4D attention mask.
|
91 |
-
device (`torch.device`):
|
92 |
-
The device to plcae the 4D attention mask on.
|
93 |
-
min_dtype (`float`):
|
94 |
-
The minimum value representable with the dtype `dtype`.
|
95 |
-
cache_position (`torch.Tensor`):
|
96 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
97 |
-
batch_size (`torch.Tensor`):
|
98 |
-
Batch size.
|
99 |
-
"""
|
100 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
101 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
102 |
-
causal_mask = attention_mask
|
103 |
-
else:
|
104 |
-
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
105 |
-
if sequence_length != 1:
|
106 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
107 |
-
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
108 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
109 |
-
if attention_mask is not None:
|
110 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
111 |
-
mask_length = attention_mask.shape[-1]
|
112 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
113 |
-
padding_mask = padding_mask == 0
|
114 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
115 |
-
padding_mask, min_dtype
|
116 |
-
)
|
117 |
-
return causal_mask
|
118 |
-
|
119 |
-
|
120 |
-
class MERaLiONSpeechAttention(nn.Module):
|
121 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
122 |
-
|
123 |
-
def __init__(
|
124 |
-
self,
|
125 |
-
embed_dim: int,
|
126 |
-
num_heads: int,
|
127 |
-
dropout: float = 0.0,
|
128 |
-
is_decoder: bool = False,
|
129 |
-
bias: bool = True,
|
130 |
-
is_causal: bool = False,
|
131 |
-
layer_idx: Optional[int] = None,
|
132 |
-
config: Optional[MERaLiONSpeechConfig] = None,
|
133 |
-
):
|
134 |
-
super().__init__()
|
135 |
-
self.embed_dim = embed_dim
|
136 |
-
self.num_heads = num_heads
|
137 |
-
self.dropout = dropout
|
138 |
-
self.head_dim = embed_dim // num_heads
|
139 |
-
self.config = config
|
140 |
-
|
141 |
-
if (self.head_dim * num_heads) != self.embed_dim:
|
142 |
-
raise ValueError(
|
143 |
-
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
144 |
-
f" and `num_heads`: {num_heads})."
|
145 |
-
)
|
146 |
-
self.scaling = self.head_dim**-0.5
|
147 |
-
self.is_decoder = is_decoder
|
148 |
-
self.is_causal = is_causal
|
149 |
-
|
150 |
-
if layer_idx is None and is_decoder:
|
151 |
-
logger.warning_once(
|
152 |
-
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
|
153 |
-
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
154 |
-
"when creating this class."
|
155 |
-
)
|
156 |
-
self.layer_idx = layer_idx
|
157 |
-
|
158 |
-
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
159 |
-
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
160 |
-
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
161 |
-
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
162 |
-
|
163 |
-
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->speech
|
164 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
165 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
166 |
-
|
167 |
-
def forward(
|
168 |
-
self,
|
169 |
-
hidden_states: torch.Tensor,
|
170 |
-
key_value_states: Optional[torch.Tensor] = None,
|
171 |
-
past_key_value: Optional[EncoderDecoderCache] = None,
|
172 |
-
attention_mask: Optional[torch.Tensor] = None,
|
173 |
-
layer_head_mask: Optional[torch.Tensor] = None,
|
174 |
-
output_attentions: bool = False,
|
175 |
-
cache_position: Optional[torch.LongTensor] = None,
|
176 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
177 |
-
"""Input shape: Batch x Time x Channel"""
|
178 |
-
|
179 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
180 |
-
# for the decoder
|
181 |
-
is_cross_attention = key_value_states is not None
|
182 |
-
bsz, tgt_len, _ = hidden_states.size()
|
183 |
-
|
184 |
-
# get query proj
|
185 |
-
query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz)
|
186 |
-
|
187 |
-
if past_key_value is not None:
|
188 |
-
is_updated = past_key_value.is_updated.get(self.layer_idx)
|
189 |
-
if is_cross_attention:
|
190 |
-
# after the first generated id, we can subsequently re-use all key/value_states from cache
|
191 |
-
past_key_value.is_updated[self.layer_idx] = True
|
192 |
-
past_key_value = past_key_value.cross_attention_cache
|
193 |
-
else:
|
194 |
-
past_key_value = past_key_value.self_attention_cache
|
195 |
-
|
196 |
-
# use key_value_states if cross attention
|
197 |
-
current_states = key_value_states if key_value_states is not None else hidden_states
|
198 |
-
if is_cross_attention and past_key_value and is_updated:
|
199 |
-
# reuse k,v, cross_attentions
|
200 |
-
key_states = past_key_value.key_cache[self.layer_idx]
|
201 |
-
value_states = past_key_value.value_cache[self.layer_idx]
|
202 |
-
else:
|
203 |
-
key_states = self._shape(self.k_proj(current_states), -1, bsz)
|
204 |
-
value_states = self._shape(self.v_proj(current_states), -1, bsz)
|
205 |
-
if past_key_value is not None:
|
206 |
-
# save all key/value_states to cache to be re-used for fast auto-regressive generation
|
207 |
-
cache_position = cache_position if not is_cross_attention else None
|
208 |
-
key_states, value_states = past_key_value.update(
|
209 |
-
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
|
210 |
-
)
|
211 |
-
|
212 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
213 |
-
|
214 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
215 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
216 |
-
attn_weights = attn_weights + causal_mask
|
217 |
-
|
218 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
219 |
-
|
220 |
-
if layer_head_mask is not None:
|
221 |
-
if layer_head_mask.size() != (self.num_heads,):
|
222 |
-
raise ValueError(
|
223 |
-
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
224 |
-
f" {layer_head_mask.size()}"
|
225 |
-
)
|
226 |
-
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights
|
227 |
-
|
228 |
-
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
229 |
-
attn_output = torch.matmul(attn_probs, value_states)
|
230 |
-
|
231 |
-
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
232 |
-
raise ValueError(
|
233 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
234 |
-
f" {attn_output.size()}"
|
235 |
-
)
|
236 |
-
|
237 |
-
attn_output = attn_output.transpose(1, 2)
|
238 |
-
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
239 |
-
# partitioned across GPUs when using tensor-parallelism.
|
240 |
-
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
241 |
-
|
242 |
-
attn_output = self.out_proj(attn_output)
|
243 |
-
|
244 |
-
return attn_output, attn_weights, past_key_value
|
245 |
-
|
246 |
-
|
247 |
-
class MERaLiONSpeechFlashAttention2(MERaLiONSpeechAttention):
|
248 |
-
"""
|
249 |
-
MERaLiONSpeech flash attention module. This module inherits from `MERaLiONSpeechAttention` as the weights of the module stays
|
250 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
251 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
252 |
-
"""
|
253 |
-
|
254 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
255 |
-
def __init__(self, *args, **kwargs):
|
256 |
-
super().__init__(*args, **kwargs)
|
257 |
-
|
258 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
259 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
260 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
261 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
262 |
-
|
263 |
-
def forward(
|
264 |
-
self,
|
265 |
-
hidden_states: torch.Tensor,
|
266 |
-
key_value_states: Optional[torch.Tensor] = None,
|
267 |
-
past_key_value: Optional[EncoderDecoderCache] = None,
|
268 |
-
attention_mask: Optional[torch.Tensor] = None,
|
269 |
-
layer_head_mask: Optional[torch.Tensor] = None,
|
270 |
-
output_attentions: bool = False,
|
271 |
-
cache_position: Optional[torch.LongTensor] = None,
|
272 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
273 |
-
if isinstance(past_key_value, StaticCache):
|
274 |
-
raise ValueError(
|
275 |
-
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. "
|
276 |
-
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers"
|
277 |
-
)
|
278 |
-
# SpeechFlashAttention2 attention does not support output_attentions
|
279 |
-
if output_attentions:
|
280 |
-
raise ValueError("SpeechFlashAttention2 attention does not support output_attentions")
|
281 |
-
|
282 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
283 |
-
# for the decoder
|
284 |
-
is_cross_attention = key_value_states is not None
|
285 |
-
bsz, tgt_len, _ = hidden_states.size()
|
286 |
-
|
287 |
-
# get query proj
|
288 |
-
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim))
|
289 |
-
|
290 |
-
if past_key_value is not None:
|
291 |
-
is_updated = past_key_value.is_updated.get(self.layer_idx)
|
292 |
-
if is_cross_attention:
|
293 |
-
# after the first generated id, we can subsequently re-use all key/value_states from cache
|
294 |
-
past_key_value.is_updated[self.layer_idx] = True
|
295 |
-
past_key_value = past_key_value.cross_attention_cache
|
296 |
-
else:
|
297 |
-
past_key_value = past_key_value.self_attention_cache
|
298 |
-
|
299 |
-
# use key_value_states if cross attention
|
300 |
-
current_states = key_value_states if key_value_states is not None else hidden_states
|
301 |
-
if is_cross_attention and past_key_value and is_updated:
|
302 |
-
# reuse k,v, cross_attentions
|
303 |
-
key_states = past_key_value.key_cache[self.layer_idx]
|
304 |
-
value_states = past_key_value.value_cache[self.layer_idx]
|
305 |
-
else:
|
306 |
-
key_states = self._shape(self.k_proj(current_states), -1, bsz)
|
307 |
-
value_states = self._shape(self.v_proj(current_states), -1, bsz)
|
308 |
-
if past_key_value is not None:
|
309 |
-
# save all key/value_states to cache to be re-used for fast auto-regressive generation
|
310 |
-
cache_position = cache_position if not is_cross_attention else None
|
311 |
-
key_states, value_states = past_key_value.update(
|
312 |
-
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
|
313 |
-
)
|
314 |
-
|
315 |
-
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
|
316 |
-
# We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
|
317 |
-
key_states = key_states.transpose(1, 2)
|
318 |
-
value_states = value_states.transpose(1, 2)
|
319 |
-
|
320 |
-
causal_mask = attention_mask
|
321 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
322 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
323 |
-
|
324 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
325 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
326 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
327 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
328 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
329 |
-
|
330 |
-
input_dtype = query_states.dtype
|
331 |
-
if input_dtype == torch.float32:
|
332 |
-
if torch.is_autocast_enabled():
|
333 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
334 |
-
# Handle the case where the model is quantized
|
335 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
336 |
-
target_dtype = self.config._pre_quantization_dtype
|
337 |
-
else:
|
338 |
-
target_dtype = self.q_proj.weight.dtype
|
339 |
-
|
340 |
-
logger.warning_once(
|
341 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
342 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
343 |
-
f" {target_dtype}."
|
344 |
-
)
|
345 |
-
|
346 |
-
query_states = query_states.to(target_dtype)
|
347 |
-
key_states = key_states.to(target_dtype)
|
348 |
-
value_states = value_states.to(target_dtype)
|
349 |
-
|
350 |
-
attn_output = _flash_attention_forward(
|
351 |
-
query_states,
|
352 |
-
key_states,
|
353 |
-
value_states,
|
354 |
-
causal_mask,
|
355 |
-
tgt_len,
|
356 |
-
dropout=self.dropout if self.training else 0.0,
|
357 |
-
is_causal=self.is_causal,
|
358 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
359 |
-
)
|
360 |
-
|
361 |
-
attn_output = attn_output.reshape(bsz, tgt_len, -1)
|
362 |
-
attn_output = self.out_proj(attn_output)
|
363 |
-
|
364 |
-
if not output_attentions:
|
365 |
-
attn_weights = None
|
366 |
-
|
367 |
-
return attn_output, attn_weights, past_key_value
|
368 |
-
|
369 |
-
|
370 |
-
class MERaLiONSpeechSdpaAttention(MERaLiONSpeechAttention):
|
371 |
-
def forward(
|
372 |
-
self,
|
373 |
-
hidden_states: torch.Tensor,
|
374 |
-
key_value_states: Optional[torch.Tensor] = None,
|
375 |
-
past_key_value: Optional[EncoderDecoderCache] = None,
|
376 |
-
attention_mask: Optional[torch.Tensor] = None,
|
377 |
-
layer_head_mask: Optional[torch.Tensor] = None,
|
378 |
-
output_attentions: bool = False,
|
379 |
-
cache_position: Optional[torch.LongTensor] = None,
|
380 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
381 |
-
"""Input shape: Batch x Time x Channel"""
|
382 |
-
if output_attentions or layer_head_mask is not None:
|
383 |
-
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
384 |
-
logger.warning_once(
|
385 |
-
"MERaLiONSpeechModel is using MERaLiONSpeechSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
|
386 |
-
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
387 |
-
)
|
388 |
-
return super().forward(
|
389 |
-
hidden_states,
|
390 |
-
key_value_states=key_value_states,
|
391 |
-
past_key_value=past_key_value,
|
392 |
-
attention_mask=attention_mask,
|
393 |
-
layer_head_mask=layer_head_mask,
|
394 |
-
output_attentions=output_attentions,
|
395 |
-
cache_position=cache_position,
|
396 |
-
)
|
397 |
-
|
398 |
-
# if key_value_states are provided this layer is used as a cross-attention layer
|
399 |
-
# for the decoder
|
400 |
-
is_cross_attention = key_value_states is not None
|
401 |
-
bsz, tgt_len, _ = hidden_states.size()
|
402 |
-
|
403 |
-
# get query proj
|
404 |
-
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
|
405 |
-
|
406 |
-
if past_key_value is not None:
|
407 |
-
is_updated = past_key_value.is_updated.get(self.layer_idx)
|
408 |
-
if is_cross_attention:
|
409 |
-
# after the first generated id, we can subsequently re-use all key/value_states from cache
|
410 |
-
past_key_value.is_updated[self.layer_idx] = True
|
411 |
-
past_key_value = past_key_value.cross_attention_cache
|
412 |
-
else:
|
413 |
-
past_key_value = past_key_value.self_attention_cache
|
414 |
-
|
415 |
-
# use key_value_states if cross attention
|
416 |
-
current_states = key_value_states if key_value_states is not None else hidden_states
|
417 |
-
if is_cross_attention and past_key_value and is_updated:
|
418 |
-
# reuse k,v, cross_attentions
|
419 |
-
key_states = past_key_value.key_cache[self.layer_idx]
|
420 |
-
value_states = past_key_value.value_cache[self.layer_idx]
|
421 |
-
else:
|
422 |
-
key_states = self._shape(self.k_proj(current_states), -1, bsz)
|
423 |
-
value_states = self._shape(self.v_proj(current_states), -1, bsz)
|
424 |
-
if past_key_value is not None:
|
425 |
-
# save all key/value_states to cache to be re-used for fast auto-regressive generation
|
426 |
-
cache_position = cache_position if not is_cross_attention else None
|
427 |
-
key_states, value_states = past_key_value.update(
|
428 |
-
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
|
429 |
-
)
|
430 |
-
|
431 |
-
causal_mask = attention_mask
|
432 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
433 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
434 |
-
|
435 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
436 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
437 |
-
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
|
438 |
-
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False
|
439 |
-
|
440 |
-
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
|
441 |
-
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
|
442 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
443 |
-
query_states,
|
444 |
-
key_states,
|
445 |
-
value_states,
|
446 |
-
attn_mask=causal_mask,
|
447 |
-
dropout_p=self.dropout if self.training else 0.0,
|
448 |
-
is_causal=is_causal,
|
449 |
-
)
|
450 |
-
|
451 |
-
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
452 |
-
raise ValueError(
|
453 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
454 |
-
f" {attn_output.size()}"
|
455 |
-
)
|
456 |
-
|
457 |
-
attn_output = attn_output.transpose(1, 2)
|
458 |
-
|
459 |
-
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
460 |
-
# partitioned across GPUs when using tensor-parallelism.
|
461 |
-
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
462 |
-
|
463 |
-
attn_output = self.out_proj(attn_output)
|
464 |
-
|
465 |
-
return attn_output, None, past_key_value
|
466 |
-
|
467 |
-
|
468 |
-
MERALION_SPEECH_ATTENTION_CLASSES = {
|
469 |
-
"eager": MERaLiONSpeechAttention,
|
470 |
-
"flash_attention_2": MERaLiONSpeechFlashAttention2,
|
471 |
-
"sdpa": MERaLiONSpeechSdpaAttention,
|
472 |
-
}
|
473 |
-
|
474 |
-
|
475 |
-
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Speech, MBART->WHISPER
|
476 |
-
class MERaLiONSpeechEncoderLayer(nn.Module):
|
477 |
-
def __init__(self, config: MERaLiONSpeechConfig):
|
478 |
-
super().__init__()
|
479 |
-
self.embed_dim = config.d_model
|
480 |
-
|
481 |
-
self.self_attn = MERALION_SPEECH_ATTENTION_CLASSES[config._attn_implementation](
|
482 |
-
embed_dim=self.embed_dim,
|
483 |
-
num_heads=config.encoder_attention_heads,
|
484 |
-
dropout=config.attention_dropout,
|
485 |
-
config=config,
|
486 |
-
)
|
487 |
-
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
488 |
-
self.dropout = config.dropout
|
489 |
-
self.activation_fn = ACT2FN[config.activation_function]
|
490 |
-
self.activation_dropout = config.activation_dropout
|
491 |
-
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
492 |
-
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
493 |
-
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
494 |
-
|
495 |
-
def forward(
|
496 |
-
self,
|
497 |
-
hidden_states: torch.Tensor,
|
498 |
-
attention_mask: torch.Tensor,
|
499 |
-
layer_head_mask: torch.Tensor,
|
500 |
-
output_attentions: bool = False,
|
501 |
-
) -> torch.Tensor:
|
502 |
-
"""
|
503 |
-
Args:
|
504 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
505 |
-
attention_mask (`torch.FloatTensor`): attention mask of size
|
506 |
-
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
507 |
-
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
508 |
-
`(encoder_attention_heads,)`.
|
509 |
-
output_attentions (`bool`, *optional*):
|
510 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
511 |
-
returned tensors for more detail.
|
512 |
-
"""
|
513 |
-
residual = hidden_states
|
514 |
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
515 |
-
hidden_states, attn_weights, _ = self.self_attn(
|
516 |
-
hidden_states=hidden_states,
|
517 |
-
attention_mask=attention_mask,
|
518 |
-
layer_head_mask=layer_head_mask,
|
519 |
-
output_attentions=output_attentions,
|
520 |
-
)
|
521 |
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
522 |
-
hidden_states = residual + hidden_states
|
523 |
-
|
524 |
-
residual = hidden_states
|
525 |
-
hidden_states = self.final_layer_norm(hidden_states)
|
526 |
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
527 |
-
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
528 |
-
hidden_states = self.fc2(hidden_states)
|
529 |
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
530 |
-
hidden_states = residual + hidden_states
|
531 |
-
|
532 |
-
if hidden_states.dtype == torch.float16 and (
|
533 |
-
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
534 |
-
):
|
535 |
-
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
536 |
-
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
537 |
-
|
538 |
-
outputs = (hidden_states,)
|
539 |
-
|
540 |
-
if output_attentions:
|
541 |
-
outputs += (attn_weights,)
|
542 |
-
|
543 |
-
return outputs
|
544 |
-
|
545 |
-
|
546 |
-
class MERaLiONSpeechPreTrainedModel(PreTrainedModel):
|
547 |
-
config_class = MERaLiONSpeechConfig
|
548 |
-
base_model_prefix = "model"
|
549 |
-
main_input_name = "input_features"
|
550 |
-
supports_gradient_checkpointing = True
|
551 |
-
_no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer"]
|
552 |
-
_supports_flash_attn_2 = True
|
553 |
-
_supports_sdpa = True
|
554 |
-
_supports_cache_class = True
|
555 |
-
_supports_static_cache = True
|
556 |
-
|
557 |
-
def _init_weights(self, module):
|
558 |
-
std = self.config.init_std
|
559 |
-
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
560 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
561 |
-
if module.bias is not None:
|
562 |
-
module.bias.data.zero_()
|
563 |
-
elif isinstance(module, nn.Embedding):
|
564 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
565 |
-
if module.padding_idx is not None:
|
566 |
-
module.weight.data[module.padding_idx].zero_()
|
567 |
-
elif isinstance(module, MERaLiONSpeechEncoder):
|
568 |
-
with torch.no_grad():
|
569 |
-
embed_positions = module.embed_positions.weight
|
570 |
-
embed_positions.copy_(sinusoids(*embed_positions.shape))
|
571 |
-
|
572 |
-
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
573 |
-
"""
|
574 |
-
Computes the output length of the convolutional layers
|
575 |
-
"""
|
576 |
-
input_lengths = (input_lengths - 1) // 2 + 1
|
577 |
-
|
578 |
-
return input_lengths
|
579 |
-
|
580 |
-
|
581 |
-
MERALION_SPEECH_START_DOCSTRING = r"""
|
582 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
583 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
584 |
-
etc.)
|
585 |
-
|
586 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
587 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
588 |
-
and behavior.
|
589 |
-
|
590 |
-
Parameters:
|
591 |
-
config ([`MERaLiONSpeechConfig`]):
|
592 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
593 |
-
load the weights associated with the model, only the configuration. Check out the
|
594 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
595 |
-
"""
|
596 |
-
|
597 |
-
MERALION_SPEECH_INPUTS_DOCSTRING = r"""
|
598 |
-
Args:
|
599 |
-
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
600 |
-
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
601 |
-
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
602 |
-
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
603 |
-
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
604 |
-
tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
|
605 |
-
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
606 |
-
Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in
|
607 |
-
`[0, 1]`:
|
608 |
-
|
609 |
-
- 1 for tokens that are **not masked**,
|
610 |
-
- 0 for tokens that are **masked**.
|
611 |
-
|
612 |
-
[What are attention masks?](../glossary#attention-mask)
|
613 |
-
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
614 |
-
Indices of decoder input sequence tokens in the vocabulary.
|
615 |
-
|
616 |
-
Indices can be obtained using [`SpeechTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
617 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
618 |
-
|
619 |
-
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
620 |
-
|
621 |
-
Speech uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If
|
622 |
-
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
623 |
-
`past_key_values`).
|
624 |
-
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
625 |
-
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
626 |
-
be used by default.
|
627 |
-
|
628 |
-
If you want to change padding behavior, you should read
|
629 |
-
[`modeling_speech._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART
|
630 |
-
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
|
631 |
-
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
632 |
-
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
633 |
-
|
634 |
-
- 1 indicates the head is **not masked**,
|
635 |
-
- 0 indicates the head is **masked**.
|
636 |
-
|
637 |
-
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
638 |
-
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
639 |
-
|
640 |
-
- 1 indicates the head is **not masked**,
|
641 |
-
- 0 indicates the head is **masked**.
|
642 |
-
|
643 |
-
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
644 |
-
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
645 |
-
|
646 |
-
- 1 indicates the head is **not masked**,
|
647 |
-
- 0 indicates the head is **masked**.
|
648 |
-
|
649 |
-
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
650 |
-
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
651 |
-
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
652 |
-
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
653 |
-
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
654 |
-
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are
|
655 |
-
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and
|
656 |
-
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or
|
657 |
-
when `config.use_cache=True`
|
658 |
-
|
659 |
-
Two formats are allowed:
|
660 |
-
- An [`~cache_utils.EncoderDecoderCache`] instance;
|
661 |
-
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
662 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
663 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
664 |
-
|
665 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
666 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
667 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
668 |
-
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
669 |
-
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
670 |
-
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
671 |
-
input (see `past_key_values`). This is useful if you want more control over how to convert
|
672 |
-
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
673 |
-
use_cache (`bool`, *optional*):
|
674 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
675 |
-
`past_key_values`).
|
676 |
-
output_attentions (`bool`, *optional*):
|
677 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
678 |
-
tensors for more detail.
|
679 |
-
output_hidden_states (`bool`, *optional*):
|
680 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
681 |
-
more detail.
|
682 |
-
return_dict (`bool`, *optional*):
|
683 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
684 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
685 |
-
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache
|
686 |
-
in the correct position and to infer the complete sequence length.
|
687 |
-
"""
|
688 |
-
|
689 |
-
MERALION_SPEECH_ENCODER_INPUTS_DOCSTRING = r"""
|
690 |
-
Args:
|
691 |
-
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
692 |
-
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
693 |
-
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
694 |
-
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
695 |
-
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
696 |
-
tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
|
697 |
-
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
698 |
-
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
699 |
-
|
700 |
-
- 1 indicates the head is **not masked**,
|
701 |
-
- 0 indicates the head is **masked**.
|
702 |
-
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
703 |
-
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
704 |
-
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
705 |
-
hidden-states at the output of the last layer of the encoder.
|
706 |
-
output_attentions (`bool`, *optional*):
|
707 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
708 |
-
tensors for more detail.
|
709 |
-
output_hidden_states (`bool`, *optional*):
|
710 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
711 |
-
more detail.
|
712 |
-
return_dict (`bool`, *optional*):
|
713 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
714 |
-
"""
|
715 |
-
|
716 |
-
|
717 |
-
class MERaLiONSpeechEncoder(MERaLiONSpeechPreTrainedModel):
|
718 |
-
"""
|
719 |
-
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
720 |
-
[`MERaLiONSpeechEncoderLayer`].
|
721 |
-
|
722 |
-
Args:
|
723 |
-
config: MERaLiONSpeechConfig
|
724 |
-
"""
|
725 |
-
|
726 |
-
def __init__(self, config: MERaLiONSpeechConfig):
|
727 |
-
super().__init__(config)
|
728 |
-
self.dropout = config.dropout
|
729 |
-
self.layerdrop = config.encoder_layerdrop
|
730 |
-
|
731 |
-
embed_dim = config.d_model
|
732 |
-
self.num_mel_bins = config.num_mel_bins
|
733 |
-
self.padding_idx = config.pad_token_id
|
734 |
-
self.max_source_positions = config.max_source_positions
|
735 |
-
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
736 |
-
|
737 |
-
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1)
|
738 |
-
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
|
739 |
-
|
740 |
-
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim)
|
741 |
-
self.embed_positions.requires_grad_(False)
|
742 |
-
|
743 |
-
self.layers = nn.ModuleList([MERaLiONSpeechEncoderLayer(config) for _ in range(config.encoder_layers)])
|
744 |
-
self.layer_norm = nn.LayerNorm(config.d_model)
|
745 |
-
|
746 |
-
self.gradient_checkpointing = False
|
747 |
-
# Initialize weights and apply final processing
|
748 |
-
self.post_init()
|
749 |
-
|
750 |
-
def _freeze_parameters(self):
|
751 |
-
for param in self.parameters():
|
752 |
-
param.requires_grad = False
|
753 |
-
self._requires_grad = False
|
754 |
-
|
755 |
-
def get_input_embeddings(self) -> nn.Module:
|
756 |
-
return self.conv1
|
757 |
-
|
758 |
-
def set_input_embeddings(self, value: nn.Module):
|
759 |
-
self.conv1 = value
|
760 |
-
|
761 |
-
def forward(
|
762 |
-
self,
|
763 |
-
input_features,
|
764 |
-
attention_mask=None,
|
765 |
-
head_mask=None,
|
766 |
-
output_attentions=None,
|
767 |
-
output_hidden_states=None,
|
768 |
-
return_dict=None,
|
769 |
-
):
|
770 |
-
r"""
|
771 |
-
Args:
|
772 |
-
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`):
|
773 |
-
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be
|
774 |
-
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a
|
775 |
-
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into
|
776 |
-
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding
|
777 |
-
and conversion into a tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`]
|
778 |
-
attention_mask (`torch.Tensor`)`, *optional*):
|
779 |
-
Speech does not support masking of the `input_features`, this argument is preserved for compatibility,
|
780 |
-
but it is not used. By default the silence in the input log mel spectrogram are ignored.
|
781 |
-
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
782 |
-
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
783 |
-
|
784 |
-
- 1 indicates the head is **not masked**,
|
785 |
-
- 0 indicates the head is **masked**.
|
786 |
-
output_attentions (`bool`, *optional*):
|
787 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
788 |
-
returned tensors for more detail.
|
789 |
-
output_hidden_states (`bool`, *optional*):
|
790 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
791 |
-
for more detail.
|
792 |
-
return_dict (`bool`, *optional*):
|
793 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
794 |
-
"""
|
795 |
-
|
796 |
-
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
|
797 |
-
if input_features.shape[-1] != expected_seq_length:
|
798 |
-
raise ValueError(
|
799 |
-
f"Speech expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
800 |
-
)
|
801 |
-
|
802 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
803 |
-
output_hidden_states = (
|
804 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
805 |
-
)
|
806 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
807 |
-
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
808 |
-
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
809 |
-
|
810 |
-
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
811 |
-
embed_pos = self.embed_positions.weight
|
812 |
-
|
813 |
-
hidden_states = inputs_embeds + embed_pos
|
814 |
-
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
815 |
-
|
816 |
-
encoder_states = () if output_hidden_states else None
|
817 |
-
all_attentions = () if output_attentions else None
|
818 |
-
|
819 |
-
# check if head_mask has a correct number of layers specified if desired
|
820 |
-
if head_mask is not None:
|
821 |
-
assert head_mask.size()[0] == (
|
822 |
-
len(self.layers)
|
823 |
-
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
824 |
-
|
825 |
-
for idx, encoder_layer in enumerate(self.layers):
|
826 |
-
if output_hidden_states:
|
827 |
-
encoder_states = encoder_states + (hidden_states,)
|
828 |
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
829 |
-
to_drop = False
|
830 |
-
if self.training:
|
831 |
-
dropout_probability = torch.rand([])
|
832 |
-
if dropout_probability < self.layerdrop: # skip the layer
|
833 |
-
to_drop = True
|
834 |
-
|
835 |
-
if to_drop:
|
836 |
-
layer_outputs = (None, None)
|
837 |
-
else:
|
838 |
-
if self.gradient_checkpointing and self.training:
|
839 |
-
layer_outputs = self._gradient_checkpointing_func(
|
840 |
-
encoder_layer.__call__,
|
841 |
-
hidden_states,
|
842 |
-
None,
|
843 |
-
(head_mask[idx] if head_mask is not None else None),
|
844 |
-
output_attentions,
|
845 |
-
)
|
846 |
-
else:
|
847 |
-
layer_outputs = encoder_layer(
|
848 |
-
hidden_states,
|
849 |
-
None,
|
850 |
-
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
851 |
-
output_attentions=output_attentions,
|
852 |
-
)
|
853 |
-
|
854 |
-
hidden_states = layer_outputs[0]
|
855 |
-
|
856 |
-
if output_attentions:
|
857 |
-
all_attentions = all_attentions + (layer_outputs[1],)
|
858 |
-
|
859 |
-
hidden_states = self.layer_norm(hidden_states)
|
860 |
-
if output_hidden_states:
|
861 |
-
encoder_states = encoder_states + (hidden_states,)
|
862 |
-
|
863 |
-
if not return_dict:
|
864 |
-
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
865 |
-
return BaseModelOutput(
|
866 |
-
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
867 |
-
)
|
868 |
-
|
869 |
-
|
870 |
-
# copied from Qwen2AudioCausalLMOutputWithPast
|
871 |
-
@dataclass
|
872 |
-
class MERaLiONOutputWithPast(ModelOutput):
|
873 |
-
"""
|
874 |
-
Base class for MERaLiON causal language model (or autoregressive) outputs.
|
875 |
-
|
876 |
-
Args:
|
877 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
878 |
-
Language modeling loss (for next-token prediction).
|
879 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
880 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
881 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
882 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
883 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
884 |
-
|
885 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
886 |
-
`past_key_values` input) to speed up sequential decoding.
|
887 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
888 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
889 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
890 |
-
|
891 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
892 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
893 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
894 |
-
sequence_length)`.
|
895 |
-
|
896 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
897 |
-
heads.
|
898 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
899 |
-
Attentions mask, used to update attention mask and position_ids.
|
900 |
-
"""
|
901 |
-
|
902 |
-
loss: Optional[torch.FloatTensor] = None
|
903 |
-
logits: torch.FloatTensor = None
|
904 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None
|
905 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
906 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
907 |
-
attention_mask: Optional[torch.FloatTensor] = None
|
908 |
-
|
909 |
-
|
910 |
-
MERALION_START_DOCSTRING = r"""
|
911 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
912 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
913 |
-
etc.)
|
914 |
-
|
915 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
916 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
917 |
-
and behavior.
|
918 |
-
|
919 |
-
Parameters:
|
920 |
-
config ([`MERaLiONConfig`]):
|
921 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
922 |
-
load the weights associated with the model, only the configuration. Check out the
|
923 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
924 |
-
"""
|
925 |
-
|
926 |
-
|
927 |
-
@add_start_docstrings(
|
928 |
-
"The bare MERaLiON Model outputting raw hidden-states without any specific head on top.",
|
929 |
-
MERALION_START_DOCSTRING,
|
930 |
-
)
|
931 |
-
class MERaLiONPreTrainedModel(PreTrainedModel):
|
932 |
-
config_class = MERaLiONConfig
|
933 |
-
base_model_prefix = "model"
|
934 |
-
supports_gradient_checkpointing = True
|
935 |
-
_no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer", "MERaLiONTextDecoderLayer"]
|
936 |
-
_supports_flash_attn_2 = True
|
937 |
-
_supports_sdpa = True
|
938 |
-
_supports_cache_class = True
|
939 |
-
_supports_static_cache = True
|
940 |
-
|
941 |
-
def _init_weights(self, module):
|
942 |
-
# important: this ported version of Qwen2Audio isn't meant for training from scratch - only
|
943 |
-
# inference and fine-tuning - so the proper init weights code has been removed
|
944 |
-
std = self.config.init_std if hasattr(self.config, "init_std") else self.config.speech_config.init_std
|
945 |
-
|
946 |
-
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
947 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
948 |
-
if module.bias is not None:
|
949 |
-
module.bias.data.zero_()
|
950 |
-
elif isinstance(module, nn.Embedding):
|
951 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
952 |
-
if module.padding_idx is not None:
|
953 |
-
module.weight.data[module.padding_idx].zero_()
|
954 |
-
|
955 |
-
@property
|
956 |
-
def _supports_sdpa(self):
|
957 |
-
"""
|
958 |
-
Retrieve language_model's attribute to check whether the model supports
|
959 |
-
SDPA or not.
|
960 |
-
"""
|
961 |
-
return self.text_decoder._supports_sdpa
|
962 |
-
|
963 |
-
class MERaLiONSpeechAudioAdaper(nn.Module):
|
964 |
-
def __init__(
|
965 |
-
self,
|
966 |
-
config,
|
967 |
-
**kwargs
|
968 |
-
):
|
969 |
-
super(MERaLiONSpeechAudioAdaper, self).__init__()
|
970 |
-
speech_audio_encoder_output_dim = config.speech_config.d_model
|
971 |
-
llm_input_hidden_size = config.text_config.hidden_size
|
972 |
-
speech_mlp_scale_factor = config.speech_mlp_scale_factor
|
973 |
-
|
974 |
-
self.speech_mlp_scale_factor = speech_mlp_scale_factor
|
975 |
-
self.mlp_adapter = nn.Sequential(
|
976 |
-
nn.Linear(
|
977 |
-
in_features=speech_audio_encoder_output_dim * speech_mlp_scale_factor,
|
978 |
-
out_features=speech_audio_encoder_output_dim
|
979 |
-
),
|
980 |
-
nn.SiLU(),
|
981 |
-
nn.Dropout(0.1),
|
982 |
-
)
|
983 |
-
|
984 |
-
self.speech_llm_proj = nn.Sequential(
|
985 |
-
nn.Linear(
|
986 |
-
speech_audio_encoder_output_dim,
|
987 |
-
speech_audio_encoder_output_dim * 4
|
988 |
-
),
|
989 |
-
nn.SiLU(),
|
990 |
-
nn.Dropout(0.1),
|
991 |
-
|
992 |
-
nn.Linear(
|
993 |
-
speech_audio_encoder_output_dim * 4,
|
994 |
-
llm_input_hidden_size
|
995 |
-
),
|
996 |
-
)
|
997 |
-
|
998 |
-
def forward(self, speech_embeds, **kwargs):
|
999 |
-
B, T, C = speech_embeds.shape
|
1000 |
-
speech_embeds = self.mlp_adapter(
|
1001 |
-
speech_embeds.reshape(
|
1002 |
-
B,
|
1003 |
-
T // self.speech_mlp_scale_factor,
|
1004 |
-
C * self.speech_mlp_scale_factor,
|
1005 |
-
)
|
1006 |
-
)
|
1007 |
-
return self.speech_llm_proj(speech_embeds)
|
1008 |
-
|
1009 |
-
|
1010 |
-
MERALION_INPUTS_DOCSTRING = r"""
|
1011 |
-
Args:
|
1012 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1013 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1014 |
-
it.
|
1015 |
-
|
1016 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1017 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1018 |
-
|
1019 |
-
[What are input IDs?](../glossary#input-ids)
|
1020 |
-
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`, *optional*):
|
1021 |
-
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by
|
1022 |
-
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
1023 |
-
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
1024 |
-
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
1025 |
-
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`]
|
1026 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1027 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1028 |
-
|
1029 |
-
- 1 for tokens that are **not masked**,
|
1030 |
-
- 0 for tokens that are **masked**.
|
1031 |
-
|
1032 |
-
[What are attention masks?](../glossary#attention-mask)
|
1033 |
-
|
1034 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1035 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1036 |
-
|
1037 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1038 |
-
`past_key_values`).
|
1039 |
-
|
1040 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1041 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1042 |
-
information on the default strategy.
|
1043 |
-
|
1044 |
-
- 1 indicates the head is **not masked**,
|
1045 |
-
- 0 indicates the head is **masked**.
|
1046 |
-
feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*):
|
1047 |
-
Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`:
|
1048 |
-
|
1049 |
-
- 1 for tokens that are **not masked**,
|
1050 |
-
- 0 for tokens that are **masked**.
|
1051 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1052 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1053 |
-
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
1054 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1055 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1056 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1057 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1058 |
-
|
1059 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1060 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1061 |
-
|
1062 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1063 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1064 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1065 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1066 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1067 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1068 |
-
model's internal embedding lookup matrix.
|
1069 |
-
use_cache (`bool`, *optional*):
|
1070 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1071 |
-
`past_key_values`).
|
1072 |
-
output_attentions (`bool`, *optional*):
|
1073 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1074 |
-
tensors for more detail.
|
1075 |
-
output_hidden_states (`bool`, *optional*):
|
1076 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1077 |
-
more detail.
|
1078 |
-
return_dict (`bool`, *optional*):
|
1079 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1080 |
-
"""
|
1081 |
-
|
1082 |
-
@add_start_docstrings(
|
1083 |
-
"""The MERALION model which consists of a audio backbone and a language model.""",
|
1084 |
-
MERALION_START_DOCSTRING,
|
1085 |
-
)
|
1086 |
-
class MERaLiONForConditionalGeneration(MERaLiONPreTrainedModel, GenerationMixin):
|
1087 |
-
def __init__(self, config: MERaLiONConfig):
|
1088 |
-
config.text_config._attn_implementation = config._attn_implementation
|
1089 |
-
config.speech_config._attn_implementation = config._attn_implementation
|
1090 |
-
|
1091 |
-
super().__init__(config)
|
1092 |
-
|
1093 |
-
self.speech_encoder = MERaLiONSpeechEncoder(config.speech_config)
|
1094 |
-
# self.speech_encoder = AutoModel.from_config(config.audio_config, attn_implementation=config._attn_implementation)
|
1095 |
-
|
1096 |
-
self.ln_speech = nn.LayerNorm(config.speech_config.d_model)
|
1097 |
-
self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(config)
|
1098 |
-
self.vocab_size = config.text_config.vocab_size
|
1099 |
-
self.text_decoder = MERaLiONTextForCausalLM(config.text_config)
|
1100 |
-
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
1101 |
-
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
1102 |
-
self.post_init()
|
1103 |
-
|
1104 |
-
@property
|
1105 |
-
def padding_side(self):
|
1106 |
-
return self._padding_side
|
1107 |
-
|
1108 |
-
@padding_side.setter
|
1109 |
-
def padding_side(self, padding_side: str):
|
1110 |
-
if padding_side not in ["left", "right"]:
|
1111 |
-
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
1112 |
-
self._padding_side = padding_side
|
1113 |
-
|
1114 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
|
1115 |
-
def get_input_embeddings(self):
|
1116 |
-
return self.text_decoder.get_input_embeddings()
|
1117 |
-
|
1118 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
|
1119 |
-
def set_input_embeddings(self, value):
|
1120 |
-
self.text_decoder.set_input_embeddings(value)
|
1121 |
-
|
1122 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
|
1123 |
-
def get_output_embeddings(self):
|
1124 |
-
return self.text_decoder.get_output_embeddings()
|
1125 |
-
|
1126 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
|
1127 |
-
def set_output_embeddings(self, new_embeddings):
|
1128 |
-
self.text_decoder.set_output_embeddings(new_embeddings)
|
1129 |
-
|
1130 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
|
1131 |
-
def set_decoder(self, decoder):
|
1132 |
-
self.text_decoder.set_decoder(decoder)
|
1133 |
-
|
1134 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
|
1135 |
-
def get_decoder(self):
|
1136 |
-
return self.text_decoder.get_decoder()
|
1137 |
-
|
1138 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
|
1139 |
-
def tie_weights(self):
|
1140 |
-
return self.text_decoder.tie_weights()
|
1141 |
-
|
1142 |
-
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
|
1143 |
-
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
1144 |
-
model_embeds = self.text_decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1145 |
-
# update vocab size
|
1146 |
-
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
1147 |
-
self.vocab_size = model_embeds.num_embeddings
|
1148 |
-
return model_embeds
|
1149 |
-
|
1150 |
-
@add_start_docstrings_to_model_forward(MERALION_INPUTS_DOCSTRING)
|
1151 |
-
@replace_return_docstrings(output_type=MERaLiONOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1152 |
-
def forward(
|
1153 |
-
self,
|
1154 |
-
input_ids: torch.LongTensor = None,
|
1155 |
-
input_features: torch.FloatTensor = None,
|
1156 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1157 |
-
feature_attention_mask: Optional[torch.Tensor] = None,
|
1158 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1159 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1160 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1161 |
-
labels: Optional[torch.LongTensor] = None,
|
1162 |
-
use_cache: Optional[bool] = None,
|
1163 |
-
cache_position: Optional[torch.LongTensor] = None,
|
1164 |
-
output_attentions: Optional[bool] = None,
|
1165 |
-
output_hidden_states: Optional[bool] = None,
|
1166 |
-
return_dict: Optional[bool] = None,
|
1167 |
-
) -> Union[Tuple, MERaLiONOutputWithPast]:
|
1168 |
-
r"""
|
1169 |
-
Args:
|
1170 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1171 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1172 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1173 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1174 |
-
|
1175 |
-
Returns:
|
1176 |
-
"""
|
1177 |
-
|
1178 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1179 |
-
output_hidden_states = (
|
1180 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1181 |
-
)
|
1182 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1183 |
-
|
1184 |
-
speech_encoder_device = self.speech_encoder.device
|
1185 |
-
|
1186 |
-
if input_features is not None:
|
1187 |
-
input_features = input_features.to(speech_encoder_device)
|
1188 |
-
feature_attention_mask = feature_attention_mask.to(speech_encoder_device)
|
1189 |
-
|
1190 |
-
if inputs_embeds is None:
|
1191 |
-
speech_contexts_embeds = self.speech_encoder(input_features, attention_mask=feature_attention_mask).last_hidden_state
|
1192 |
-
speech_contexts_embeds = self.ln_speech(speech_contexts_embeds)
|
1193 |
-
speech_audio_contexts_embeds = self.speech_audio_adapter(speech_contexts_embeds)
|
1194 |
-
|
1195 |
-
inputs_embeds = self.text_decoder.base_model.embed_tokens(input_ids)
|
1196 |
-
|
1197 |
-
speech_mask = (input_ids == self.config.speech_token_index).unsqueeze(-1)
|
1198 |
-
speech_mask = speech_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
|
1199 |
-
|
1200 |
-
inputs_embeds = inputs_embeds.masked_scatter(speech_mask, speech_audio_contexts_embeds)
|
1201 |
-
|
1202 |
-
input_ids = None
|
1203 |
-
|
1204 |
-
outputs = self.text_decoder(
|
1205 |
-
input_ids=input_ids,
|
1206 |
-
attention_mask=attention_mask,
|
1207 |
-
position_ids=position_ids,
|
1208 |
-
past_key_values=past_key_values,
|
1209 |
-
inputs_embeds=inputs_embeds,
|
1210 |
-
use_cache=use_cache,
|
1211 |
-
cache_position=cache_position,
|
1212 |
-
output_attentions=output_attentions,
|
1213 |
-
output_hidden_states=output_hidden_states,
|
1214 |
-
return_dict=return_dict,
|
1215 |
-
labels=labels
|
1216 |
-
)
|
1217 |
-
|
1218 |
-
return outputs
|
1219 |
-
|
1220 |
-
# from transformers.models.gemma2.modeling_gemma2.Gemma2ForCausalLM.prepare_inputs_for_generation
|
1221 |
-
def prepare_inputs_for_generation(
|
1222 |
-
self,
|
1223 |
-
input_ids,
|
1224 |
-
attention_mask=None,
|
1225 |
-
input_features=None,
|
1226 |
-
feature_attention_mask=None,
|
1227 |
-
past_key_values=None,
|
1228 |
-
inputs_embeds=None,
|
1229 |
-
cache_position=None,
|
1230 |
-
position_ids=None,
|
1231 |
-
use_cache=None,
|
1232 |
-
**kwargs,
|
1233 |
-
):
|
1234 |
-
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1235 |
-
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1236 |
-
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1237 |
-
is_first_step = cache_position[0].item() == 0
|
1238 |
-
if past_key_values is not None:
|
1239 |
-
if inputs_embeds is not None: # Exception 1
|
1240 |
-
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1241 |
-
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1242 |
-
input_ids = input_ids[:, cache_position]
|
1243 |
-
|
1244 |
-
if attention_mask is not None and position_ids is None:
|
1245 |
-
# create position_ids on the fly for batch generation
|
1246 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1247 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1248 |
-
if past_key_values:
|
1249 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1250 |
-
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
1251 |
-
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
1252 |
-
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
1253 |
-
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
1254 |
-
# which retriggers a capture.
|
1255 |
-
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1256 |
-
|
1257 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1258 |
-
if inputs_embeds is not None and is_first_step:
|
1259 |
-
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1260 |
-
else:
|
1261 |
-
# The clone here is for the same reason as for `position_ids`.
|
1262 |
-
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1263 |
-
|
1264 |
-
if (
|
1265 |
-
isinstance(past_key_values, HybridCache)
|
1266 |
-
and attention_mask.ndim == 2
|
1267 |
-
and not self.config._attn_implementation == "flash_attention_2"
|
1268 |
-
):
|
1269 |
-
if model_inputs["inputs_embeds"] is not None:
|
1270 |
-
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1271 |
-
device = model_inputs["inputs_embeds"].device
|
1272 |
-
else:
|
1273 |
-
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1274 |
-
device = model_inputs["input_ids"].device
|
1275 |
-
dtype = self.text_decoder.lm_head.weight.dtype
|
1276 |
-
min_dtype = torch.finfo(dtype).min
|
1277 |
-
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1278 |
-
attention_mask,
|
1279 |
-
sequence_length=sequence_length,
|
1280 |
-
target_length=past_key_values.get_max_length(),
|
1281 |
-
dtype=dtype,
|
1282 |
-
device=device,
|
1283 |
-
min_dtype=min_dtype,
|
1284 |
-
cache_position=cache_position,
|
1285 |
-
batch_size=batch_size,
|
1286 |
-
)
|
1287 |
-
|
1288 |
-
model_inputs.update(
|
1289 |
-
{
|
1290 |
-
"attention_mask": attention_mask,
|
1291 |
-
"position_ids": position_ids,
|
1292 |
-
"cache_position": cache_position,
|
1293 |
-
"past_key_values": past_key_values,
|
1294 |
-
"use_cache": use_cache
|
1295 |
-
}
|
1296 |
-
)
|
1297 |
-
|
1298 |
-
# Input ids will only be used from the second step.
|
1299 |
-
if is_first_step:
|
1300 |
-
model_inputs["input_features"] = input_features
|
1301 |
-
model_inputs["feature_attention_mask"] = feature_attention_mask
|
1302 |
-
|
1303 |
-
return model_inputs
|
1304 |
-
|
1305 |
-
def _reorder_cache(self, *args, **kwargs):
|
1306 |
-
return self.text_decoder._reorder_cache(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vllm_plugin_meralion/vllm_plugin_meralion/modeling_text_decoder.py
DELETED
@@ -1,1319 +0,0 @@
|
|
1 |
-
"""PyTorch MERaLiON AudioLLM model text decoder."""
|
2 |
-
|
3 |
-
from typing import List, Optional, Tuple, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torch.nn as nn
|
7 |
-
import torch.utils.checkpoint
|
8 |
-
|
9 |
-
from transformers.activations import ACT2FN
|
10 |
-
from transformers.cache_utils import Cache, HybridCache
|
11 |
-
from transformers.generation import GenerationMixin
|
12 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
13 |
-
from transformers.modeling_outputs import (
|
14 |
-
BaseModelOutputWithPast,
|
15 |
-
CausalLMOutputWithPast,
|
16 |
-
SequenceClassifierOutputWithPast,
|
17 |
-
TokenClassifierOutput,
|
18 |
-
)
|
19 |
-
from transformers.modeling_utils import PreTrainedModel
|
20 |
-
from transformers.utils import (
|
21 |
-
add_code_sample_docstrings,
|
22 |
-
add_start_docstrings,
|
23 |
-
add_start_docstrings_to_model_forward,
|
24 |
-
is_flash_attn_greater_or_equal,
|
25 |
-
is_flash_attn_greater_or_equal_2_10,
|
26 |
-
logging,
|
27 |
-
replace_return_docstrings,
|
28 |
-
)
|
29 |
-
from .configuration_meralion import MERaLiONTextConfig
|
30 |
-
|
31 |
-
|
32 |
-
_CHECKPOINT_FOR_DOC = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"
|
33 |
-
|
34 |
-
|
35 |
-
class MERaLiONTextRMSNorm(nn.Module):
|
36 |
-
def __init__(self, dim: int, eps: float = 1e-6):
|
37 |
-
super().__init__()
|
38 |
-
self.eps = eps
|
39 |
-
self.weight = nn.Parameter(torch.zeros(dim))
|
40 |
-
|
41 |
-
def _norm(self, x):
|
42 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
43 |
-
|
44 |
-
def forward(self, x):
|
45 |
-
output = self._norm(x.float())
|
46 |
-
# Llama does x.to(float16) * w whilst MERaLiONText is (x * w).to(float16)
|
47 |
-
# See https://github.com/huggingface/transformers/pull/29402
|
48 |
-
output = output * (1.0 + self.weight.float())
|
49 |
-
return output.type_as(x)
|
50 |
-
|
51 |
-
def extra_repr(self):
|
52 |
-
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
53 |
-
|
54 |
-
|
55 |
-
class MERaLiONTextMLP(nn.Module):
|
56 |
-
def __init__(self, config):
|
57 |
-
super().__init__()
|
58 |
-
self.config = config
|
59 |
-
self.hidden_size = config.hidden_size
|
60 |
-
self.intermediate_size = config.intermediate_size
|
61 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
62 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
63 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
64 |
-
self.act_fn = ACT2FN[config.hidden_activation]
|
65 |
-
|
66 |
-
def forward(self, x):
|
67 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
68 |
-
|
69 |
-
|
70 |
-
logger = logging.get_logger(__name__)
|
71 |
-
|
72 |
-
|
73 |
-
class MERaLiONTextRotaryEmbedding(nn.Module):
|
74 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
75 |
-
super().__init__()
|
76 |
-
|
77 |
-
self.dim = dim
|
78 |
-
self.max_position_embeddings = max_position_embeddings
|
79 |
-
self.base = base
|
80 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
81 |
-
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
|
82 |
-
|
83 |
-
@torch.no_grad()
|
84 |
-
def forward(self, x, position_ids, seq_len=None):
|
85 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
86 |
-
self.inv_freq.to(x.device)
|
87 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
88 |
-
position_ids_expanded = position_ids[:, None, :].float()
|
89 |
-
# Force float32 since bfloat16 loses precision on long contexts
|
90 |
-
# See https://github.com/huggingface/transformers/pull/29285
|
91 |
-
device_type = x.device.type
|
92 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
93 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
94 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
95 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
96 |
-
cos = emb.cos()
|
97 |
-
sin = emb.sin()
|
98 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
99 |
-
|
100 |
-
|
101 |
-
def rotate_half(x):
|
102 |
-
"""Rotates half the hidden dims of the input."""
|
103 |
-
x1 = x[..., : x.shape[-1] // 2]
|
104 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
105 |
-
return torch.cat((-x2, x1), dim=-1)
|
106 |
-
|
107 |
-
|
108 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
109 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
110 |
-
|
111 |
-
Args:
|
112 |
-
q (`torch.Tensor`): The query tensor.
|
113 |
-
k (`torch.Tensor`): The key tensor.
|
114 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
115 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
116 |
-
position_ids (`torch.Tensor`, *optional*):
|
117 |
-
Deprecated and unused.
|
118 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
119 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
120 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
121 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
122 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
123 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
124 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
125 |
-
Returns:
|
126 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
127 |
-
"""
|
128 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
129 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
130 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
131 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
132 |
-
return q_embed, k_embed
|
133 |
-
|
134 |
-
|
135 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
136 |
-
"""
|
137 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
138 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
139 |
-
"""
|
140 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
141 |
-
if n_rep == 1:
|
142 |
-
return hidden_states
|
143 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
144 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
145 |
-
|
146 |
-
|
147 |
-
class MERaLiONTextAttention(nn.Module):
|
148 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
149 |
-
|
150 |
-
def __init__(self, config: MERaLiONTextConfig, layer_idx: Optional[int] = None):
|
151 |
-
super().__init__()
|
152 |
-
self.config = config
|
153 |
-
self.layer_idx = layer_idx
|
154 |
-
if layer_idx is None:
|
155 |
-
logger.warning_once(
|
156 |
-
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
157 |
-
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
158 |
-
"when creating this class."
|
159 |
-
)
|
160 |
-
|
161 |
-
self.attention_dropout = config.attention_dropout
|
162 |
-
self.hidden_size = config.hidden_size
|
163 |
-
self.num_heads = config.num_attention_heads
|
164 |
-
self.head_dim = config.head_dim
|
165 |
-
self.num_key_value_heads = config.num_key_value_heads
|
166 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
167 |
-
self.max_position_embeddings = config.max_position_embeddings
|
168 |
-
self.rope_theta = config.rope_theta
|
169 |
-
self.is_causal = True
|
170 |
-
self.scaling = config.query_pre_attn_scalar**-0.5
|
171 |
-
|
172 |
-
if self.hidden_size % self.num_heads != 0:
|
173 |
-
raise ValueError(
|
174 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
175 |
-
f" and `num_heads`: {self.num_heads})."
|
176 |
-
)
|
177 |
-
|
178 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
179 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
180 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
181 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
182 |
-
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
|
183 |
-
self.rotary_emb = MERaLiONTextRotaryEmbedding(
|
184 |
-
self.head_dim,
|
185 |
-
max_position_embeddings=self.max_position_embeddings,
|
186 |
-
base=self.rope_theta,
|
187 |
-
)
|
188 |
-
|
189 |
-
def forward(
|
190 |
-
self,
|
191 |
-
hidden_states: torch.Tensor,
|
192 |
-
attention_mask: Optional[torch.Tensor] = None,
|
193 |
-
position_ids: Optional[torch.LongTensor] = None,
|
194 |
-
past_key_value: Optional[Cache] = None,
|
195 |
-
output_attentions: bool = False,
|
196 |
-
use_cache: bool = False,
|
197 |
-
cache_position: Optional[torch.LongTensor] = None,
|
198 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
199 |
-
bsz, q_len, _ = hidden_states.size()
|
200 |
-
|
201 |
-
query_states = self.q_proj(hidden_states)
|
202 |
-
key_states = self.k_proj(hidden_states)
|
203 |
-
value_states = self.v_proj(hidden_states)
|
204 |
-
|
205 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
206 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
207 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
208 |
-
|
209 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
210 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
211 |
-
|
212 |
-
if past_key_value is not None:
|
213 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
214 |
-
cache_kwargs = {
|
215 |
-
"sin": sin,
|
216 |
-
"cos": cos,
|
217 |
-
"sliding_window": self.sliding_window,
|
218 |
-
"cache_position": cache_position,
|
219 |
-
}
|
220 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
221 |
-
|
222 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
223 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
224 |
-
|
225 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
|
226 |
-
|
227 |
-
if self.config.attn_logit_softcapping is not None:
|
228 |
-
attn_weights = attn_weights / self.config.attn_logit_softcapping
|
229 |
-
attn_weights = torch.tanh(attn_weights)
|
230 |
-
attn_weights = attn_weights * self.config.attn_logit_softcapping
|
231 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
232 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
233 |
-
attn_weights = attn_weights + causal_mask
|
234 |
-
|
235 |
-
# upcast attention to fp32
|
236 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
237 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
238 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
239 |
-
|
240 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
241 |
-
raise ValueError(
|
242 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
243 |
-
f" {attn_output.size()}"
|
244 |
-
)
|
245 |
-
|
246 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
247 |
-
|
248 |
-
attn_output = attn_output.view(bsz, q_len, -1)
|
249 |
-
attn_output = self.o_proj(attn_output)
|
250 |
-
|
251 |
-
if not output_attentions:
|
252 |
-
attn_weights = None
|
253 |
-
|
254 |
-
return attn_output, attn_weights, past_key_value
|
255 |
-
|
256 |
-
|
257 |
-
class MERaLiONTextFlashAttention2(MERaLiONTextAttention):
|
258 |
-
"""
|
259 |
-
MERaLiONText flash attention module. This module inherits from `MERaLiONTextAttention` as the weights of the module stays
|
260 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
261 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
262 |
-
"""
|
263 |
-
|
264 |
-
def __init__(self, *args, **kwargs):
|
265 |
-
super().__init__(*args, **kwargs)
|
266 |
-
|
267 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
268 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
269 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
270 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
271 |
-
|
272 |
-
def forward(
|
273 |
-
self,
|
274 |
-
hidden_states: torch.Tensor,
|
275 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
276 |
-
position_ids: Optional[torch.LongTensor] = None,
|
277 |
-
past_key_value: Optional[Cache] = None,
|
278 |
-
output_attentions: bool = False,
|
279 |
-
use_cache: bool = False,
|
280 |
-
cache_position: Optional[torch.LongTensor] = None,
|
281 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
282 |
-
output_attentions = False
|
283 |
-
|
284 |
-
bsz, q_len, _ = hidden_states.size()
|
285 |
-
|
286 |
-
query_states = self.q_proj(hidden_states)
|
287 |
-
key_states = self.k_proj(hidden_states)
|
288 |
-
value_states = self.v_proj(hidden_states)
|
289 |
-
|
290 |
-
# Flash attention requires the input to have the shape
|
291 |
-
# batch_size x seq_length x head_dim x hidden_dim
|
292 |
-
# therefore we just need to keep the original shape
|
293 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
294 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
295 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
296 |
-
|
297 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
298 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
299 |
-
|
300 |
-
if past_key_value is not None:
|
301 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
302 |
-
cache_kwargs = {
|
303 |
-
"sin": sin,
|
304 |
-
"cos": cos,
|
305 |
-
"sliding_window": self.sliding_window,
|
306 |
-
"cache_position": cache_position,
|
307 |
-
}
|
308 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
309 |
-
|
310 |
-
if attention_mask is not None:
|
311 |
-
seq_len = attention_mask.shape[1]
|
312 |
-
key_states = key_states[:, :, :seq_len]
|
313 |
-
value_states = value_states[:, :, :seq_len]
|
314 |
-
|
315 |
-
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
316 |
-
# to be able to avoid many of these transpose/reshape/view.
|
317 |
-
query_states = query_states.transpose(1, 2)
|
318 |
-
key_states = key_states.transpose(1, 2)
|
319 |
-
value_states = value_states.transpose(1, 2)
|
320 |
-
|
321 |
-
dropout_rate = self.attention_dropout if self.training else 0.0
|
322 |
-
|
323 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
324 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
325 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
326 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
327 |
-
# in fp32. (MERaLiONTextRMSNorm handles it correctly)
|
328 |
-
|
329 |
-
input_dtype = query_states.dtype
|
330 |
-
if input_dtype == torch.float32:
|
331 |
-
if torch.is_autocast_enabled():
|
332 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
333 |
-
# Handle the case where the model is quantized
|
334 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
335 |
-
target_dtype = self.config._pre_quantization_dtype
|
336 |
-
else:
|
337 |
-
target_dtype = self.q_proj.weight.dtype
|
338 |
-
|
339 |
-
logger.warning_once(
|
340 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
341 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
342 |
-
f" {target_dtype}."
|
343 |
-
)
|
344 |
-
|
345 |
-
query_states = query_states.to(target_dtype)
|
346 |
-
key_states = key_states.to(target_dtype)
|
347 |
-
value_states = value_states.to(target_dtype)
|
348 |
-
|
349 |
-
attn_output = _flash_attention_forward(
|
350 |
-
query_states,
|
351 |
-
key_states,
|
352 |
-
value_states,
|
353 |
-
attention_mask,
|
354 |
-
q_len,
|
355 |
-
dropout=dropout_rate,
|
356 |
-
softmax_scale=self.scaling,
|
357 |
-
is_causal=self.is_causal,
|
358 |
-
sliding_window=self.sliding_window,
|
359 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
360 |
-
softcap=self.config.attn_logit_softcapping if is_flash_attn_greater_or_equal("2.6.0") else None,
|
361 |
-
)
|
362 |
-
|
363 |
-
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
364 |
-
attn_output = self.o_proj(attn_output)
|
365 |
-
|
366 |
-
if not output_attentions:
|
367 |
-
attn_weights = None
|
368 |
-
|
369 |
-
return attn_output, attn_weights, past_key_value
|
370 |
-
|
371 |
-
|
372 |
-
class MERaLiONTextSdpaAttention(MERaLiONTextAttention):
|
373 |
-
"""
|
374 |
-
MERaLiONText attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
375 |
-
`MERaLiONTextAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
376 |
-
SDPA API.
|
377 |
-
"""
|
378 |
-
|
379 |
-
# Adapted from MERaLiONTextAttention.forward
|
380 |
-
def forward(
|
381 |
-
self,
|
382 |
-
hidden_states: torch.Tensor,
|
383 |
-
attention_mask: Optional[torch.Tensor] = None,
|
384 |
-
position_ids: Optional[torch.LongTensor] = None,
|
385 |
-
past_key_value: Optional[Cache] = None,
|
386 |
-
output_attentions: bool = False,
|
387 |
-
use_cache: bool = False,
|
388 |
-
cache_position: Optional[torch.LongTensor] = None,
|
389 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
390 |
-
if output_attentions:
|
391 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
392 |
-
logger.warning_once(
|
393 |
-
"MERaLiONTextModel is using MERaLiONTextSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
394 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
395 |
-
)
|
396 |
-
return super().forward(
|
397 |
-
hidden_states=hidden_states,
|
398 |
-
attention_mask=attention_mask,
|
399 |
-
position_ids=position_ids,
|
400 |
-
past_key_value=past_key_value,
|
401 |
-
output_attentions=output_attentions,
|
402 |
-
use_cache=use_cache,
|
403 |
-
cache_position=cache_position,
|
404 |
-
)
|
405 |
-
|
406 |
-
bsz, q_len, _ = hidden_states.size()
|
407 |
-
|
408 |
-
query_states = self.q_proj(hidden_states)
|
409 |
-
key_states = self.k_proj(hidden_states)
|
410 |
-
value_states = self.v_proj(hidden_states)
|
411 |
-
|
412 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
413 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
414 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
415 |
-
|
416 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
417 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
418 |
-
|
419 |
-
if past_key_value is not None:
|
420 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
421 |
-
cache_kwargs = {
|
422 |
-
"sin": sin,
|
423 |
-
"cos": cos,
|
424 |
-
"sliding_window": self.sliding_window,
|
425 |
-
"cache_position": cache_position,
|
426 |
-
}
|
427 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
428 |
-
|
429 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
430 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
431 |
-
|
432 |
-
causal_mask = attention_mask
|
433 |
-
if attention_mask is not None:
|
434 |
-
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
435 |
-
|
436 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
437 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
438 |
-
if query_states.device.type == "cuda" and causal_mask is not None:
|
439 |
-
query_states = query_states.contiguous()
|
440 |
-
key_states = key_states.contiguous()
|
441 |
-
value_states = value_states.contiguous()
|
442 |
-
|
443 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
444 |
-
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
445 |
-
is_causal = True if causal_mask is None and q_len > 1 else False
|
446 |
-
|
447 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
448 |
-
query_states,
|
449 |
-
key_states,
|
450 |
-
value_states,
|
451 |
-
attn_mask=causal_mask,
|
452 |
-
dropout_p=self.attention_dropout if self.training else 0.0,
|
453 |
-
is_causal=is_causal,
|
454 |
-
scale=self.scaling,
|
455 |
-
)
|
456 |
-
|
457 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
458 |
-
attn_output = attn_output.view(bsz, q_len, -1)
|
459 |
-
|
460 |
-
attn_output = self.o_proj(attn_output)
|
461 |
-
|
462 |
-
return attn_output, None, past_key_value
|
463 |
-
|
464 |
-
|
465 |
-
MERALION_TEXT_ATTENTION_CLASSES = {
|
466 |
-
"eager": MERaLiONTextAttention,
|
467 |
-
"flash_attention_2": MERaLiONTextFlashAttention2,
|
468 |
-
"sdpa": MERaLiONTextSdpaAttention,
|
469 |
-
}
|
470 |
-
|
471 |
-
|
472 |
-
class MERaLiONTextDecoderLayer(nn.Module):
|
473 |
-
def __init__(self, config: MERaLiONTextConfig, layer_idx: int):
|
474 |
-
super().__init__()
|
475 |
-
self.hidden_size = config.hidden_size
|
476 |
-
self.self_attn = MERALION_TEXT_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
477 |
-
self.mlp = MERaLiONTextMLP(config)
|
478 |
-
self.input_layernorm = MERaLiONTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
479 |
-
self.config = config
|
480 |
-
self.is_sliding = not bool(layer_idx % 2)
|
481 |
-
self.pre_feedforward_layernorm = MERaLiONTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
482 |
-
self.post_feedforward_layernorm = MERaLiONTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
483 |
-
self.sliding_window = config.sliding_window
|
484 |
-
self.post_attention_layernorm = MERaLiONTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
485 |
-
|
486 |
-
def forward(
|
487 |
-
self,
|
488 |
-
hidden_states: torch.Tensor,
|
489 |
-
attention_mask: Optional[torch.Tensor] = None,
|
490 |
-
position_ids: Optional[torch.LongTensor] = None,
|
491 |
-
past_key_value: Optional[Cache] = None,
|
492 |
-
output_attentions: Optional[bool] = False,
|
493 |
-
use_cache: Optional[bool] = False,
|
494 |
-
cache_position: Optional[torch.LongTensor] = None,
|
495 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
496 |
-
"""
|
497 |
-
Args:
|
498 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
499 |
-
attention_mask (`torch.FloatTensor`, *optional*):
|
500 |
-
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
501 |
-
query_sequence_length, key_sequence_length)` if default attention is used.
|
502 |
-
output_attentions (`bool`, *optional*):
|
503 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
504 |
-
returned tensors for more detail.
|
505 |
-
use_cache (`bool`, *optional*):
|
506 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
507 |
-
(see `past_key_values`).
|
508 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
509 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
510 |
-
Indices depicting the position of the input sequence tokens in the sequence
|
511 |
-
kwargs (`dict`, *optional*):
|
512 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
513 |
-
into the model
|
514 |
-
"""
|
515 |
-
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
516 |
-
# Flash-attn is a 2D tensor
|
517 |
-
if self.config._attn_implementation == "flash_attention_2":
|
518 |
-
if past_key_value is not None: # when decoding
|
519 |
-
attention_mask = attention_mask[:, -self.sliding_window :]
|
520 |
-
else:
|
521 |
-
min_dtype = torch.finfo(hidden_states.dtype).min
|
522 |
-
sliding_window_mask = torch.tril(
|
523 |
-
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
524 |
-
)
|
525 |
-
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
526 |
-
if attention_mask.shape[-1] <= 1: # when decoding
|
527 |
-
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
|
528 |
-
|
529 |
-
residual = hidden_states
|
530 |
-
|
531 |
-
hidden_states = self.input_layernorm(hidden_states)
|
532 |
-
|
533 |
-
# Self Attention
|
534 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
535 |
-
hidden_states=hidden_states,
|
536 |
-
attention_mask=attention_mask,
|
537 |
-
position_ids=position_ids,
|
538 |
-
past_key_value=past_key_value,
|
539 |
-
output_attentions=output_attentions,
|
540 |
-
use_cache=use_cache,
|
541 |
-
cache_position=cache_position,
|
542 |
-
)
|
543 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
544 |
-
hidden_states = residual + hidden_states
|
545 |
-
|
546 |
-
residual = hidden_states
|
547 |
-
hidden_states = self.pre_feedforward_layernorm(hidden_states)
|
548 |
-
hidden_states = self.mlp(hidden_states)
|
549 |
-
hidden_states = self.post_feedforward_layernorm(hidden_states)
|
550 |
-
hidden_states = residual + hidden_states
|
551 |
-
|
552 |
-
outputs = (hidden_states,)
|
553 |
-
|
554 |
-
if output_attentions:
|
555 |
-
outputs += (self_attn_weights,)
|
556 |
-
|
557 |
-
if use_cache:
|
558 |
-
outputs += (present_key_value,)
|
559 |
-
|
560 |
-
return outputs
|
561 |
-
|
562 |
-
|
563 |
-
MERALION_TEXT_START_DOCSTRING = r"""
|
564 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
565 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
566 |
-
etc.)
|
567 |
-
|
568 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
569 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
570 |
-
and behavior.
|
571 |
-
|
572 |
-
Parameters:
|
573 |
-
config ([`MERaLiONTextConfig`]):
|
574 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
575 |
-
load the weights associated with the model, only the configuration. Check out the
|
576 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
577 |
-
"""
|
578 |
-
|
579 |
-
|
580 |
-
@add_start_docstrings(
|
581 |
-
"The bare MERaLiONText Model outputting raw hidden-states without any specific head on top.",
|
582 |
-
MERALION_TEXT_START_DOCSTRING,
|
583 |
-
)
|
584 |
-
class MERaLiONTextPreTrainedModel(PreTrainedModel):
|
585 |
-
config_class = MERaLiONTextConfig
|
586 |
-
base_model_prefix = "model"
|
587 |
-
supports_gradient_checkpointing = True
|
588 |
-
_no_split_modules = ["MERaLiONTextDecoderLayer"]
|
589 |
-
_skip_keys_device_placement = ["past_key_values"]
|
590 |
-
_supports_flash_attn_2 = True
|
591 |
-
_supports_sdpa = True
|
592 |
-
_supports_cache_class = True
|
593 |
-
_supports_quantized_cache = False
|
594 |
-
_supports_static_cache = True
|
595 |
-
|
596 |
-
def _init_weights(self, module):
|
597 |
-
std = self.config.initializer_range
|
598 |
-
if isinstance(module, nn.Linear):
|
599 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
600 |
-
if module.bias is not None:
|
601 |
-
module.bias.data.zero_()
|
602 |
-
elif isinstance(module, nn.Embedding):
|
603 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
604 |
-
if module.padding_idx is not None:
|
605 |
-
module.weight.data[module.padding_idx].zero_()
|
606 |
-
|
607 |
-
@classmethod
|
608 |
-
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False):
|
609 |
-
"""
|
610 |
-
Overloads `PreTrainedModel._check_and_enable_sdpa` so as to DISABLE torch SDPA by default on MERaLiONText models.
|
611 |
-
SDPA reduces the model performance on MERaLiONText because of the logits softcapping.
|
612 |
-
"""
|
613 |
-
config = super()._check_and_enable_sdpa(config, hard_check_only=hard_check_only)
|
614 |
-
|
615 |
-
# if using the default path -> swap sdpa by eager
|
616 |
-
if not hard_check_only and config._attn_implementation == "sdpa":
|
617 |
-
config._attn_implementation = "eager"
|
618 |
-
|
619 |
-
return config
|
620 |
-
|
621 |
-
|
622 |
-
_CONFIG_FOR_DOC = "MERaLiONTextConfig"
|
623 |
-
|
624 |
-
|
625 |
-
MERALION_TEXT_INPUTS_DOCSTRING = r"""
|
626 |
-
Args:
|
627 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
628 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
629 |
-
it.
|
630 |
-
|
631 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
632 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
633 |
-
|
634 |
-
[What are input IDs?](../glossary#input-ids)
|
635 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
636 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
637 |
-
|
638 |
-
- 1 for tokens that are **not masked**,
|
639 |
-
- 0 for tokens that are **masked**.
|
640 |
-
|
641 |
-
[What are attention masks?](../glossary#attention-mask)
|
642 |
-
|
643 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
644 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
645 |
-
|
646 |
-
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
647 |
-
`past_key_values`).
|
648 |
-
|
649 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
650 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
651 |
-
information on the default strategy.
|
652 |
-
|
653 |
-
- 1 indicates the head is **not masked**,
|
654 |
-
- 0 indicates the head is **masked**.
|
655 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
656 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
657 |
-
config.n_positions - 1]`.
|
658 |
-
|
659 |
-
[What are position IDs?](../glossary#position-ids)
|
660 |
-
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
661 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
662 |
-
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
663 |
-
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
664 |
-
|
665 |
-
Two formats are allowed:
|
666 |
-
- a [`~cache_utils.Cache`] instance, see our
|
667 |
-
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
668 |
-
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
669 |
-
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
670 |
-
cache format.
|
671 |
-
|
672 |
-
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
673 |
-
legacy cache format will be returned.
|
674 |
-
|
675 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
676 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
677 |
-
of shape `(batch_size, sequence_length)`.
|
678 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
679 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
680 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
681 |
-
model's internal embedding lookup matrix.
|
682 |
-
use_cache (`bool`, *optional*):
|
683 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
684 |
-
`past_key_values`).
|
685 |
-
output_attentions (`bool`, *optional*):
|
686 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
687 |
-
tensors for more detail.
|
688 |
-
output_hidden_states (`bool`, *optional*):
|
689 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
690 |
-
more detail.
|
691 |
-
return_dict (`bool`, *optional*):
|
692 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
693 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
694 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
695 |
-
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
696 |
-
the complete sequence length.
|
697 |
-
"""
|
698 |
-
|
699 |
-
|
700 |
-
@add_start_docstrings(
|
701 |
-
"The bare MERaLiONText Model outputting raw hidden-states without any specific head on top.",
|
702 |
-
MERALION_TEXT_START_DOCSTRING,
|
703 |
-
)
|
704 |
-
class MERaLiONTextModel(MERaLiONTextPreTrainedModel):
|
705 |
-
"""
|
706 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MERaLiONTextDecoderLayer`]
|
707 |
-
|
708 |
-
Args:
|
709 |
-
config: MERaLiONTextConfig
|
710 |
-
"""
|
711 |
-
|
712 |
-
def __init__(self, config: MERaLiONTextConfig):
|
713 |
-
super().__init__(config)
|
714 |
-
self.padding_idx = config.pad_token_id
|
715 |
-
self.vocab_size = config.vocab_size
|
716 |
-
|
717 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
718 |
-
self.layers = nn.ModuleList(
|
719 |
-
[MERaLiONTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
720 |
-
)
|
721 |
-
self.norm = MERaLiONTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
722 |
-
self.gradient_checkpointing = False
|
723 |
-
|
724 |
-
# Initialize weights and apply final processing
|
725 |
-
self.post_init()
|
726 |
-
|
727 |
-
def get_input_embeddings(self):
|
728 |
-
return self.embed_tokens
|
729 |
-
|
730 |
-
def set_input_embeddings(self, value):
|
731 |
-
self.embed_tokens = value
|
732 |
-
|
733 |
-
@add_start_docstrings_to_model_forward(MERALION_TEXT_INPUTS_DOCSTRING)
|
734 |
-
def forward(
|
735 |
-
self,
|
736 |
-
input_ids: torch.LongTensor = None,
|
737 |
-
attention_mask: Optional[torch.Tensor] = None,
|
738 |
-
position_ids: Optional[torch.LongTensor] = None,
|
739 |
-
past_key_values: Optional[HybridCache] = None,
|
740 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
741 |
-
use_cache: Optional[bool] = None,
|
742 |
-
output_attentions: Optional[bool] = None,
|
743 |
-
output_hidden_states: Optional[bool] = None,
|
744 |
-
return_dict: Optional[bool] = None,
|
745 |
-
cache_position: Optional[torch.LongTensor] = None,
|
746 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
747 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
748 |
-
output_hidden_states = (
|
749 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
750 |
-
)
|
751 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
752 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
753 |
-
|
754 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
755 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
756 |
-
|
757 |
-
if self.gradient_checkpointing and self.training and use_cache:
|
758 |
-
logger.warning_once(
|
759 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
760 |
-
)
|
761 |
-
use_cache = False
|
762 |
-
|
763 |
-
if inputs_embeds is None:
|
764 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
765 |
-
|
766 |
-
if use_cache and past_key_values is None and not self.training:
|
767 |
-
batch_size, seq_len, _ = inputs_embeds.shape
|
768 |
-
past_key_values = HybridCache(
|
769 |
-
self.config,
|
770 |
-
batch_size=batch_size,
|
771 |
-
max_cache_len=seq_len,
|
772 |
-
device=self.device,
|
773 |
-
dtype=inputs_embeds.dtype,
|
774 |
-
)
|
775 |
-
|
776 |
-
if cache_position is None:
|
777 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
778 |
-
cache_position = torch.arange(
|
779 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
780 |
-
)
|
781 |
-
|
782 |
-
if position_ids is None:
|
783 |
-
position_ids = cache_position.unsqueeze(0)
|
784 |
-
|
785 |
-
causal_mask = self._update_causal_mask(
|
786 |
-
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
787 |
-
)
|
788 |
-
|
789 |
-
# embed positions
|
790 |
-
hidden_states = inputs_embeds
|
791 |
-
|
792 |
-
# normalized
|
793 |
-
# MERaLiONText downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
|
794 |
-
# See https://github.com/huggingface/transformers/pull/29402
|
795 |
-
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
|
796 |
-
hidden_states = hidden_states * normalizer
|
797 |
-
|
798 |
-
# decoder layers
|
799 |
-
all_hidden_states = () if output_hidden_states else None
|
800 |
-
all_self_attns = () if output_attentions else None
|
801 |
-
|
802 |
-
for decoder_layer in self.layers:
|
803 |
-
if output_hidden_states:
|
804 |
-
all_hidden_states += (hidden_states,)
|
805 |
-
|
806 |
-
if self.gradient_checkpointing and self.training:
|
807 |
-
layer_outputs = self._gradient_checkpointing_func(
|
808 |
-
decoder_layer.__call__,
|
809 |
-
hidden_states,
|
810 |
-
causal_mask,
|
811 |
-
position_ids,
|
812 |
-
past_key_values,
|
813 |
-
output_attentions,
|
814 |
-
use_cache,
|
815 |
-
cache_position,
|
816 |
-
)
|
817 |
-
else:
|
818 |
-
layer_outputs = decoder_layer(
|
819 |
-
hidden_states,
|
820 |
-
attention_mask=causal_mask,
|
821 |
-
position_ids=position_ids,
|
822 |
-
past_key_value=past_key_values,
|
823 |
-
output_attentions=output_attentions,
|
824 |
-
use_cache=use_cache,
|
825 |
-
cache_position=cache_position,
|
826 |
-
)
|
827 |
-
|
828 |
-
hidden_states = layer_outputs[0]
|
829 |
-
|
830 |
-
if output_attentions:
|
831 |
-
all_self_attns += (layer_outputs[1],)
|
832 |
-
|
833 |
-
hidden_states = self.norm(hidden_states)
|
834 |
-
|
835 |
-
if output_hidden_states:
|
836 |
-
all_hidden_states += (hidden_states,)
|
837 |
-
|
838 |
-
next_cache = past_key_values if use_cache else None
|
839 |
-
|
840 |
-
if not return_dict:
|
841 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
842 |
-
return BaseModelOutputWithPast(
|
843 |
-
last_hidden_state=hidden_states,
|
844 |
-
past_key_values=next_cache,
|
845 |
-
hidden_states=all_hidden_states,
|
846 |
-
attentions=all_self_attns,
|
847 |
-
)
|
848 |
-
|
849 |
-
def _update_causal_mask(
|
850 |
-
self,
|
851 |
-
attention_mask: torch.Tensor,
|
852 |
-
input_tensor: torch.Tensor,
|
853 |
-
cache_position: torch.Tensor,
|
854 |
-
past_key_values: HybridCache,
|
855 |
-
output_attentions: bool,
|
856 |
-
):
|
857 |
-
# Flash Attention currently doesn't support static cache but MERaLiONText work only with static cache.
|
858 |
-
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
|
859 |
-
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
|
860 |
-
# as it doesn't cause dynamic control issues.
|
861 |
-
if self.config._attn_implementation == "flash_attention_2":
|
862 |
-
return attention_mask
|
863 |
-
|
864 |
-
dtype, device = input_tensor.dtype, input_tensor.device
|
865 |
-
sequence_length = input_tensor.shape[1]
|
866 |
-
if isinstance(past_key_values, HybridCache):
|
867 |
-
target_length = past_key_values.get_max_cache_shape()
|
868 |
-
else:
|
869 |
-
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
|
870 |
-
|
871 |
-
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
872 |
-
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
873 |
-
attention_mask,
|
874 |
-
sequence_length=sequence_length,
|
875 |
-
target_length=target_length,
|
876 |
-
dtype=dtype,
|
877 |
-
device=device,
|
878 |
-
cache_position=cache_position,
|
879 |
-
batch_size=input_tensor.shape[0],
|
880 |
-
)
|
881 |
-
return causal_mask
|
882 |
-
|
883 |
-
@staticmethod
|
884 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
885 |
-
attention_mask: torch.Tensor,
|
886 |
-
sequence_length: int,
|
887 |
-
target_length: int,
|
888 |
-
dtype: torch.dtype,
|
889 |
-
device: torch.device,
|
890 |
-
cache_position: torch.Tensor,
|
891 |
-
batch_size: int,
|
892 |
-
**kwargs,
|
893 |
-
):
|
894 |
-
"""
|
895 |
-
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
896 |
-
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
897 |
-
|
898 |
-
Args:
|
899 |
-
attention_mask (`torch.Tensor`):
|
900 |
-
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
901 |
-
`(batch_size, 1, query_length, key_value_length)`.
|
902 |
-
sequence_length (`int`):
|
903 |
-
The sequence length being processed.
|
904 |
-
target_length (`int`):
|
905 |
-
The target length: when generating with static cache, the mask should be as long as the static cache,
|
906 |
-
to account for the 0 padding, the part of the cache that is not filled yet.
|
907 |
-
dtype (`torch.dtype`):
|
908 |
-
The dtype to use for the 4D attention mask.
|
909 |
-
device (`torch.device`):
|
910 |
-
The device to plcae the 4D attention mask on.
|
911 |
-
cache_position (`torch.Tensor`):
|
912 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
913 |
-
batch_size (`torch.Tensor`):
|
914 |
-
Batch size.
|
915 |
-
"""
|
916 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
917 |
-
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
918 |
-
causal_mask = attention_mask
|
919 |
-
else:
|
920 |
-
min_dtype = torch.finfo(dtype).min
|
921 |
-
causal_mask = torch.full(
|
922 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
923 |
-
)
|
924 |
-
if sequence_length != 1:
|
925 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
926 |
-
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
927 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
928 |
-
if attention_mask is not None:
|
929 |
-
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
930 |
-
mask_length = attention_mask.shape[-1]
|
931 |
-
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
932 |
-
padding_mask = padding_mask == 0
|
933 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
934 |
-
padding_mask, min_dtype
|
935 |
-
)
|
936 |
-
|
937 |
-
return causal_mask
|
938 |
-
|
939 |
-
|
940 |
-
class MERaLiONTextForCausalLM(MERaLiONTextPreTrainedModel, GenerationMixin):
|
941 |
-
_tied_weights_keys = ["lm_head.weight"]
|
942 |
-
|
943 |
-
def __init__(self, config):
|
944 |
-
super().__init__(config)
|
945 |
-
self.model = MERaLiONTextModel(config)
|
946 |
-
self.vocab_size = config.vocab_size
|
947 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
948 |
-
|
949 |
-
# Initialize weights and apply final processing
|
950 |
-
self.post_init()
|
951 |
-
|
952 |
-
def get_input_embeddings(self):
|
953 |
-
return self.model.embed_tokens
|
954 |
-
|
955 |
-
def set_input_embeddings(self, value):
|
956 |
-
self.model.embed_tokens = value
|
957 |
-
|
958 |
-
def get_output_embeddings(self):
|
959 |
-
return self.lm_head
|
960 |
-
|
961 |
-
def set_output_embeddings(self, new_embeddings):
|
962 |
-
self.lm_head = new_embeddings
|
963 |
-
|
964 |
-
def set_decoder(self, decoder):
|
965 |
-
self.model = decoder
|
966 |
-
|
967 |
-
def get_decoder(self):
|
968 |
-
return self.model
|
969 |
-
|
970 |
-
@add_start_docstrings_to_model_forward(MERALION_TEXT_INPUTS_DOCSTRING)
|
971 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
972 |
-
def forward(
|
973 |
-
self,
|
974 |
-
input_ids: torch.LongTensor = None,
|
975 |
-
attention_mask: Optional[torch.Tensor] = None,
|
976 |
-
position_ids: Optional[torch.LongTensor] = None,
|
977 |
-
past_key_values: Optional[HybridCache] = None,
|
978 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
979 |
-
labels: Optional[torch.LongTensor] = None,
|
980 |
-
use_cache: Optional[bool] = None,
|
981 |
-
output_attentions: Optional[bool] = None,
|
982 |
-
output_hidden_states: Optional[bool] = None,
|
983 |
-
return_dict: Optional[bool] = None,
|
984 |
-
cache_position: Optional[torch.LongTensor] = None,
|
985 |
-
num_logits_to_keep: int = 0,
|
986 |
-
**loss_kwargs,
|
987 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
988 |
-
r"""
|
989 |
-
Args:
|
990 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
991 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
992 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
993 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
994 |
-
|
995 |
-
num_logits_to_keep (`int`, *optional*):
|
996 |
-
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
997 |
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
998 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
999 |
-
|
1000 |
-
Returns:
|
1001 |
-
"""
|
1002 |
-
|
1003 |
-
if self.training and self.config._attn_implementation != "eager":
|
1004 |
-
logger.warning_once(
|
1005 |
-
"It is strongly recommended to train MERaLiONText models with the `eager` attention implementation "
|
1006 |
-
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
|
1007 |
-
)
|
1008 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1009 |
-
output_hidden_states = (
|
1010 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1011 |
-
)
|
1012 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1013 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1014 |
-
outputs = self.model(
|
1015 |
-
input_ids=input_ids,
|
1016 |
-
attention_mask=attention_mask,
|
1017 |
-
position_ids=position_ids,
|
1018 |
-
past_key_values=past_key_values,
|
1019 |
-
inputs_embeds=inputs_embeds,
|
1020 |
-
use_cache=use_cache,
|
1021 |
-
output_attentions=output_attentions,
|
1022 |
-
output_hidden_states=output_hidden_states,
|
1023 |
-
return_dict=return_dict,
|
1024 |
-
cache_position=cache_position,
|
1025 |
-
)
|
1026 |
-
|
1027 |
-
hidden_states = outputs[0]
|
1028 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1029 |
-
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1030 |
-
if self.config.final_logit_softcapping is not None:
|
1031 |
-
logits = logits / self.config.final_logit_softcapping
|
1032 |
-
logits = torch.tanh(logits)
|
1033 |
-
logits = logits * self.config.final_logit_softcapping
|
1034 |
-
|
1035 |
-
loss = None
|
1036 |
-
if labels is not None:
|
1037 |
-
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
1038 |
-
|
1039 |
-
if not return_dict:
|
1040 |
-
output = (logits,) + outputs[1:]
|
1041 |
-
return (loss,) + output if loss is not None else output
|
1042 |
-
|
1043 |
-
return CausalLMOutputWithPast(
|
1044 |
-
loss=loss,
|
1045 |
-
logits=logits,
|
1046 |
-
past_key_values=outputs.past_key_values,
|
1047 |
-
hidden_states=outputs.hidden_states,
|
1048 |
-
attentions=outputs.attentions,
|
1049 |
-
)
|
1050 |
-
|
1051 |
-
def prepare_inputs_for_generation(
|
1052 |
-
self,
|
1053 |
-
input_ids,
|
1054 |
-
past_key_values=None,
|
1055 |
-
attention_mask=None,
|
1056 |
-
inputs_embeds=None,
|
1057 |
-
cache_position=None,
|
1058 |
-
position_ids=None,
|
1059 |
-
use_cache=True,
|
1060 |
-
num_logits_to_keep=None,
|
1061 |
-
**kwargs,
|
1062 |
-
):
|
1063 |
-
# Overwritten: has a special cache type, `HybridCache`
|
1064 |
-
|
1065 |
-
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1066 |
-
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1067 |
-
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1068 |
-
if past_key_values is not None:
|
1069 |
-
if inputs_embeds is not None: # Exception 1
|
1070 |
-
input_ids = input_ids[:, -cache_position.shape[0] :]
|
1071 |
-
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1072 |
-
input_ids = input_ids[:, cache_position]
|
1073 |
-
if attention_mask is not None and position_ids is None:
|
1074 |
-
# create position_ids on the fly for batch generation
|
1075 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
1076 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
1077 |
-
if past_key_values:
|
1078 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1079 |
-
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
|
1080 |
-
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
|
1081 |
-
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
|
1082 |
-
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
|
1083 |
-
# which retriggers a capture.
|
1084 |
-
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1085 |
-
|
1086 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1087 |
-
if inputs_embeds is not None and cache_position[0] == 0:
|
1088 |
-
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1089 |
-
else:
|
1090 |
-
# The clone here is for the same reason as for `position_ids`.
|
1091 |
-
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1092 |
-
|
1093 |
-
if (
|
1094 |
-
isinstance(past_key_values, HybridCache)
|
1095 |
-
and attention_mask.ndim == 2
|
1096 |
-
and not self.config._attn_implementation == "flash_attention_2"
|
1097 |
-
):
|
1098 |
-
if model_inputs["inputs_embeds"] is not None:
|
1099 |
-
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1100 |
-
device = model_inputs["inputs_embeds"].device
|
1101 |
-
else:
|
1102 |
-
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1103 |
-
device = model_inputs["input_ids"].device
|
1104 |
-
|
1105 |
-
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
|
1106 |
-
attention_mask,
|
1107 |
-
sequence_length=sequence_length,
|
1108 |
-
target_length=past_key_values.get_max_cache_shape(),
|
1109 |
-
dtype=self.lm_head.weight.dtype,
|
1110 |
-
device=device,
|
1111 |
-
cache_position=cache_position,
|
1112 |
-
batch_size=batch_size,
|
1113 |
-
)
|
1114 |
-
|
1115 |
-
if num_logits_to_keep is not None:
|
1116 |
-
model_inputs["num_logits_to_keep"] = num_logits_to_keep
|
1117 |
-
|
1118 |
-
model_inputs.update(
|
1119 |
-
{
|
1120 |
-
"position_ids": position_ids,
|
1121 |
-
"cache_position": cache_position,
|
1122 |
-
"past_key_values": past_key_values,
|
1123 |
-
"use_cache": use_cache,
|
1124 |
-
"attention_mask": attention_mask,
|
1125 |
-
}
|
1126 |
-
)
|
1127 |
-
return model_inputs
|
1128 |
-
|
1129 |
-
|
1130 |
-
@add_start_docstrings(
|
1131 |
-
"""
|
1132 |
-
The MERaLiONText Model transformer with a sequence classification head on top (linear layer).
|
1133 |
-
|
1134 |
-
[`MERaLiONTextForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1135 |
-
(e.g. GPT-2) do.
|
1136 |
-
|
1137 |
-
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1138 |
-
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1139 |
-
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1140 |
-
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1141 |
-
each row of the batch).
|
1142 |
-
""",
|
1143 |
-
MERALION_TEXT_START_DOCSTRING,
|
1144 |
-
)
|
1145 |
-
class MERaLiONTextForSequenceClassification(MERaLiONTextPreTrainedModel):
|
1146 |
-
def __init__(self, config):
|
1147 |
-
super().__init__(config)
|
1148 |
-
self.num_labels = config.num_labels
|
1149 |
-
self.model = MERaLiONTextModel(config)
|
1150 |
-
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1151 |
-
|
1152 |
-
# Initialize weights and apply final processing
|
1153 |
-
self.post_init()
|
1154 |
-
|
1155 |
-
def get_input_embeddings(self):
|
1156 |
-
return self.model.embed_tokens
|
1157 |
-
|
1158 |
-
def set_input_embeddings(self, value):
|
1159 |
-
self.model.embed_tokens = value
|
1160 |
-
|
1161 |
-
@add_start_docstrings_to_model_forward(MERALION_TEXT_INPUTS_DOCSTRING)
|
1162 |
-
def forward(
|
1163 |
-
self,
|
1164 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1165 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1166 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1167 |
-
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1168 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1169 |
-
labels: Optional[torch.LongTensor] = None,
|
1170 |
-
use_cache: Optional[bool] = None,
|
1171 |
-
output_attentions: Optional[bool] = None,
|
1172 |
-
output_hidden_states: Optional[bool] = None,
|
1173 |
-
return_dict: Optional[bool] = None,
|
1174 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1175 |
-
r"""
|
1176 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1177 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1178 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1179 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1180 |
-
"""
|
1181 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1182 |
-
|
1183 |
-
transformer_outputs = self.model(
|
1184 |
-
input_ids,
|
1185 |
-
attention_mask=attention_mask,
|
1186 |
-
position_ids=position_ids,
|
1187 |
-
past_key_values=past_key_values,
|
1188 |
-
inputs_embeds=inputs_embeds,
|
1189 |
-
use_cache=use_cache,
|
1190 |
-
output_attentions=output_attentions,
|
1191 |
-
output_hidden_states=output_hidden_states,
|
1192 |
-
return_dict=return_dict,
|
1193 |
-
)
|
1194 |
-
hidden_states = transformer_outputs[0]
|
1195 |
-
logits = self.score(hidden_states)
|
1196 |
-
|
1197 |
-
if input_ids is not None:
|
1198 |
-
batch_size = input_ids.shape[0]
|
1199 |
-
else:
|
1200 |
-
batch_size = inputs_embeds.shape[0]
|
1201 |
-
|
1202 |
-
if self.config.pad_token_id is None and batch_size != 1:
|
1203 |
-
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1204 |
-
if self.config.pad_token_id is None:
|
1205 |
-
sequence_lengths = -1
|
1206 |
-
else:
|
1207 |
-
if input_ids is not None:
|
1208 |
-
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1209 |
-
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1210 |
-
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1211 |
-
sequence_lengths = sequence_lengths.to(logits.device)
|
1212 |
-
else:
|
1213 |
-
sequence_lengths = -1
|
1214 |
-
|
1215 |
-
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1216 |
-
|
1217 |
-
loss = None
|
1218 |
-
if labels is not None:
|
1219 |
-
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
|
1220 |
-
|
1221 |
-
if not return_dict:
|
1222 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
1223 |
-
return ((loss,) + output) if loss is not None else output
|
1224 |
-
|
1225 |
-
return SequenceClassifierOutputWithPast(
|
1226 |
-
loss=loss,
|
1227 |
-
logits=pooled_logits,
|
1228 |
-
past_key_values=transformer_outputs.past_key_values,
|
1229 |
-
hidden_states=transformer_outputs.hidden_states,
|
1230 |
-
attentions=transformer_outputs.attentions,
|
1231 |
-
)
|
1232 |
-
|
1233 |
-
|
1234 |
-
@add_start_docstrings(
|
1235 |
-
"""
|
1236 |
-
The MERaLiONText Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1237 |
-
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1238 |
-
""",
|
1239 |
-
MERALION_TEXT_START_DOCSTRING,
|
1240 |
-
)
|
1241 |
-
class MERaLiONTextForTokenClassification(MERaLiONTextPreTrainedModel):
|
1242 |
-
def __init__(self, config):
|
1243 |
-
super().__init__(config)
|
1244 |
-
self.num_labels = config.num_labels
|
1245 |
-
self.model = MERaLiONTextModel(config)
|
1246 |
-
if getattr(config, "classifier_dropout", None) is not None:
|
1247 |
-
classifier_dropout = config.classifier_dropout
|
1248 |
-
elif getattr(config, "hidden_dropout", None) is not None:
|
1249 |
-
classifier_dropout = config.hidden_dropout
|
1250 |
-
else:
|
1251 |
-
classifier_dropout = 0.1
|
1252 |
-
self.dropout = nn.Dropout(classifier_dropout)
|
1253 |
-
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1254 |
-
|
1255 |
-
# Initialize weights and apply final processing
|
1256 |
-
self.post_init()
|
1257 |
-
|
1258 |
-
def get_input_embeddings(self):
|
1259 |
-
return self.model.embed_tokens
|
1260 |
-
|
1261 |
-
def set_input_embeddings(self, value):
|
1262 |
-
self.model.embed_tokens = value
|
1263 |
-
|
1264 |
-
@add_start_docstrings_to_model_forward(MERALION_TEXT_INPUTS_DOCSTRING)
|
1265 |
-
@add_code_sample_docstrings(
|
1266 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
1267 |
-
output_type=TokenClassifierOutput,
|
1268 |
-
config_class=_CONFIG_FOR_DOC,
|
1269 |
-
)
|
1270 |
-
def forward(
|
1271 |
-
self,
|
1272 |
-
input_ids: Optional[torch.LongTensor] = None,
|
1273 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1274 |
-
position_ids: Optional[torch.LongTensor] = None,
|
1275 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1276 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1277 |
-
labels: Optional[torch.LongTensor] = None,
|
1278 |
-
use_cache: Optional[bool] = None,
|
1279 |
-
output_attentions: Optional[bool] = None,
|
1280 |
-
output_hidden_states: Optional[bool] = None,
|
1281 |
-
return_dict: Optional[bool] = None,
|
1282 |
-
) -> Union[Tuple, TokenClassifierOutput]:
|
1283 |
-
r"""
|
1284 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1285 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1286 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1287 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1288 |
-
"""
|
1289 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1290 |
-
|
1291 |
-
outputs = self.model(
|
1292 |
-
input_ids,
|
1293 |
-
attention_mask=attention_mask,
|
1294 |
-
position_ids=position_ids,
|
1295 |
-
past_key_values=past_key_values,
|
1296 |
-
inputs_embeds=inputs_embeds,
|
1297 |
-
use_cache=use_cache,
|
1298 |
-
output_attentions=output_attentions,
|
1299 |
-
output_hidden_states=output_hidden_states,
|
1300 |
-
return_dict=return_dict,
|
1301 |
-
)
|
1302 |
-
sequence_output = outputs[0]
|
1303 |
-
sequence_output = self.dropout(sequence_output)
|
1304 |
-
logits = self.score(sequence_output)
|
1305 |
-
|
1306 |
-
loss = None
|
1307 |
-
if labels is not None:
|
1308 |
-
loss = self.loss_function(logits, labels, self.config)
|
1309 |
-
|
1310 |
-
if not return_dict:
|
1311 |
-
output = (logits,) + outputs[2:]
|
1312 |
-
return ((loss,) + output) if loss is not None else output
|
1313 |
-
|
1314 |
-
return TokenClassifierOutput(
|
1315 |
-
loss=loss,
|
1316 |
-
logits=logits,
|
1317 |
-
hidden_states=outputs.hidden_states,
|
1318 |
-
attentions=outputs.attentions,
|
1319 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vllm_plugin_meralion/vllm_plugin_meralion/vllm_meralion.py
CHANGED
@@ -13,26 +13,30 @@ from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData,
|
|
13 |
InputContext, token_inputs)
|
14 |
from vllm.logger import init_logger
|
15 |
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
|
16 |
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
17 |
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
18 |
from vllm.model_executor.model_loader.weight_utils import (
|
19 |
default_weight_loader, maybe_remap_kv_scale_name)
|
20 |
from vllm.model_executor.models.gemma2 import Gemma2Model
|
|
|
21 |
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
22 |
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
|
23 |
from vllm.multimodal.utils import consecutive_placeholder_ranges
|
24 |
-
from vllm.sequence import IntermediateTensors, SequenceData
|
|
|
|
|
25 |
|
26 |
-
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsPP
|
27 |
from vllm.model_executor.models.utils import maybe_prefix
|
28 |
|
29 |
-
from .modeling_meralion import MERaLiONSpeechEncoder
|
30 |
|
31 |
logger = init_logger(__name__)
|
32 |
|
|
|
33 |
# gemma2 ties word embedding by default
|
34 |
_KEYS_TO_MODIFY_MAPPING = {
|
35 |
-
"text_decoder.model": "
|
36 |
}
|
37 |
|
38 |
# === Constants === #
|
@@ -96,6 +100,17 @@ class MERaLiONSpeechAudioAdaper(nn.Module):
|
|
96 |
return self.speech_llm_proj(speech_embeds)
|
97 |
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def dummy_data_for_meralion(ctx: InputContext, seq_len: int,
|
100 |
mm_counts: Mapping[str, int]):
|
101 |
num_audios = mm_counts["audio"]
|
@@ -180,11 +195,22 @@ def _get_chunked_audios(audios: List[np.ndarray]):
|
|
180 |
for audio_idx, audio in enumerate(audios):
|
181 |
for cid in range(audio_number_chunks[audio_idx]):
|
182 |
chunked_resampled_audios.append(
|
183 |
-
audio[cid * FEATURE_CHUNK_SIZE: (cid + 1) * FEATURE_CHUNK_SIZE]
|
184 |
)
|
185 |
return chunked_resampled_audios
|
186 |
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
def get_max_meralion_audio_tokens(ctx: InputContext) -> int:
|
189 |
"""
|
190 |
The max number of tokens after speech audio adapter.
|
@@ -206,6 +232,7 @@ def input_processor_for_meralion(
|
|
206 |
return inputs
|
207 |
|
208 |
processor = cached_get_processor(ctx.model_config.model)
|
|
|
209 |
resampled_audios = [
|
210 |
librosa.resample(audio,
|
211 |
orig_sr=sampling_rate,
|
@@ -259,18 +286,21 @@ def input_mapper_for_meralion(
|
|
259 |
"to process the audio object")
|
260 |
|
261 |
try:
|
|
|
|
|
262 |
resampled_audios = [
|
263 |
-
|
264 |
-
audio,
|
265 |
-
|
266 |
-
|
|
|
267 |
for audio, sampling_rate in multi_modal_data
|
268 |
]
|
269 |
|
270 |
resampled_audios = _get_chunked_audios(resampled_audios)
|
271 |
|
272 |
batch_data = audio_feature_extractor(resampled_audios,
|
273 |
-
sampling_rate=
|
274 |
return_attention_mask=True,
|
275 |
padding="max_length",
|
276 |
return_tensors="pt").data
|
@@ -289,29 +319,57 @@ def input_mapper_for_meralion(
|
|
289 |
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
|
290 |
"audio", get_max_meralion_audio_tokens)
|
291 |
class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
295 |
super().__init__()
|
296 |
config = vllm_config.model_config.hf_config
|
297 |
quant_config = vllm_config.quant_config
|
298 |
multimodal_config = vllm_config.model_config.multimodal_config
|
|
|
|
|
|
|
299 |
self.config = config
|
300 |
self.multimodal_config = multimodal_config
|
|
|
301 |
|
302 |
-
|
|
|
|
|
303 |
self.ln_speech = nn.LayerNorm(config.speech_config.d_model)
|
304 |
self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(
|
305 |
config.speech_config.d_model, config.text_config.hidden_size)
|
306 |
|
307 |
self.quant_config = quant_config
|
308 |
|
309 |
-
self.
|
310 |
vllm_config=vllm_config.with_hf_config(config.text_config),
|
311 |
prefix=maybe_prefix(prefix, "model"))
|
312 |
self.unpadded_vocab_size = config.text_config.vocab_size
|
313 |
if config.text_config.tie_word_embeddings:
|
314 |
-
self.lm_head = self.
|
315 |
else:
|
316 |
self.lm_head = ParallelLMHead(config.text_config.vocab_size,
|
317 |
config.text_config.hidden_size,
|
@@ -323,8 +381,16 @@ class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
323 |
|
324 |
self.sampler = get_sampler()
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
self.make_empty_intermediate_tensors = (
|
327 |
-
self.
|
328 |
|
329 |
def _validate_and_reshape_mm_tensor(self,
|
330 |
mm_input: Union[torch.Tensor,
|
@@ -387,7 +453,7 @@ class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
387 |
if audio_input is None:
|
388 |
inputs_embeds = None
|
389 |
else:
|
390 |
-
inputs_embeds = self.
|
391 |
processed_audio_features = self._process_audio_input(audio_input)
|
392 |
# merge llm embeddings and audio features
|
393 |
mask = (input_ids == self.config.speech_token_index)
|
@@ -395,7 +461,7 @@ class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
395 |
|
396 |
input_ids = None
|
397 |
|
398 |
-
hidden_states = self.
|
399 |
input_ids=input_ids,
|
400 |
positions=positions,
|
401 |
kv_caches=kv_caches,
|
@@ -418,6 +484,13 @@ class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
418 |
) -> Optional[SamplerOutput]:
|
419 |
next_tokens = self.sampler(logits, sampling_metadata)
|
420 |
return next_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
423 |
stacked_params_mapping = [
|
@@ -462,4 +535,4 @@ class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
|
462 |
param = params_dict[name]
|
463 |
weight_loader = getattr(param, "weight_loader",
|
464 |
default_weight_loader)
|
465 |
-
weight_loader(param, loaded_weight)
|
|
|
13 |
InputContext, token_inputs)
|
14 |
from vllm.logger import init_logger
|
15 |
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
16 |
+
from vllm.model_executor.layers.pooler import Pooler, PoolingType
|
17 |
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
18 |
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
19 |
from vllm.model_executor.model_loader.weight_utils import (
|
20 |
default_weight_loader, maybe_remap_kv_scale_name)
|
21 |
from vllm.model_executor.models.gemma2 import Gemma2Model
|
22 |
+
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
23 |
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
24 |
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
|
25 |
from vllm.multimodal.utils import consecutive_placeholder_ranges
|
26 |
+
from vllm.sequence import IntermediateTensors, SequenceData, PoolerOutput
|
27 |
+
from transformers.models.whisper.modeling_whisper import WhisperEncoder
|
28 |
+
from transformers.utils.import_utils import is_torch_sdpa_available, is_flash_attn_2_available
|
29 |
|
30 |
+
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsLoRA, SupportsPP
|
31 |
from vllm.model_executor.models.utils import maybe_prefix
|
32 |
|
|
|
33 |
|
34 |
logger = init_logger(__name__)
|
35 |
|
36 |
+
|
37 |
# gemma2 ties word embedding by default
|
38 |
_KEYS_TO_MODIFY_MAPPING = {
|
39 |
+
"text_decoder.model": "model",
|
40 |
}
|
41 |
|
42 |
# === Constants === #
|
|
|
100 |
return self.speech_llm_proj(speech_embeds)
|
101 |
|
102 |
|
103 |
+
def _autoset_attn_implementation_for_whisper(config):
|
104 |
+
_implementation = "eager"
|
105 |
+
if is_torch_sdpa_available():
|
106 |
+
_implementation = "sdpa"
|
107 |
+
if is_flash_attn_2_available():
|
108 |
+
_implementation = "flash_attention_2"
|
109 |
+
|
110 |
+
config._attn_implementation = _implementation
|
111 |
+
return config
|
112 |
+
|
113 |
+
|
114 |
def dummy_data_for_meralion(ctx: InputContext, seq_len: int,
|
115 |
mm_counts: Mapping[str, int]):
|
116 |
num_audios = mm_counts["audio"]
|
|
|
195 |
for audio_idx, audio in enumerate(audios):
|
196 |
for cid in range(audio_number_chunks[audio_idx]):
|
197 |
chunked_resampled_audios.append(
|
198 |
+
audio[cid * FEATURE_CHUNK_SIZE: (cid + 1) * FEATURE_CHUNK_SIZE]
|
199 |
)
|
200 |
return chunked_resampled_audios
|
201 |
|
202 |
|
203 |
+
def _maybe_resample_audio(audio, orig_sample_rate, target_sample_rate):
|
204 |
+
if orig_sample_rate != target_sample_rate:
|
205 |
+
return librosa.resample(
|
206 |
+
audio,
|
207 |
+
orig_sr=orig_sample_rate,
|
208 |
+
target_sr=target_sample_rate
|
209 |
+
)
|
210 |
+
|
211 |
+
return audio
|
212 |
+
|
213 |
+
|
214 |
def get_max_meralion_audio_tokens(ctx: InputContext) -> int:
|
215 |
"""
|
216 |
The max number of tokens after speech audio adapter.
|
|
|
232 |
return inputs
|
233 |
|
234 |
processor = cached_get_processor(ctx.model_config.model)
|
235 |
+
|
236 |
resampled_audios = [
|
237 |
librosa.resample(audio,
|
238 |
orig_sr=sampling_rate,
|
|
|
286 |
"to process the audio object")
|
287 |
|
288 |
try:
|
289 |
+
target_sample_rate = processor.feature_extractor.sampling_rate
|
290 |
+
|
291 |
resampled_audios = [
|
292 |
+
_maybe_resample_audio(
|
293 |
+
audio=audio,
|
294 |
+
orig_sample_rate=sampling_rate,
|
295 |
+
target_sample_rate=target_sample_rate,
|
296 |
+
)
|
297 |
for audio, sampling_rate in multi_modal_data
|
298 |
]
|
299 |
|
300 |
resampled_audios = _get_chunked_audios(resampled_audios)
|
301 |
|
302 |
batch_data = audio_feature_extractor(resampled_audios,
|
303 |
+
sampling_rate=target_sample_rate,
|
304 |
return_attention_mask=True,
|
305 |
padding="max_length",
|
306 |
return_tensors="pt").data
|
|
|
319 |
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
|
320 |
"audio", get_max_meralion_audio_tokens)
|
321 |
class MERaLiONForConditionalGeneration(nn.Module, SupportsMultiModal,
|
322 |
+
SupportsLoRA, SupportsPP):
|
323 |
+
packed_modules_mapping = {
|
324 |
+
"qkv_proj": [
|
325 |
+
"q_proj",
|
326 |
+
"k_proj",
|
327 |
+
"v_proj",
|
328 |
+
],
|
329 |
+
"gate_up_proj": [
|
330 |
+
"gate_proj",
|
331 |
+
"up_proj",
|
332 |
+
],
|
333 |
+
}
|
334 |
+
|
335 |
+
# LoRA specific attributes
|
336 |
+
supported_lora_modules = [
|
337 |
+
"qkv_proj",
|
338 |
+
"o_proj",
|
339 |
+
"gate_up_proj",
|
340 |
+
"down_proj",
|
341 |
+
]
|
342 |
+
|
343 |
+
embedding_modules = {}
|
344 |
+
embedding_padding_modules = []
|
345 |
|
346 |
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
347 |
super().__init__()
|
348 |
config = vllm_config.model_config.hf_config
|
349 |
quant_config = vllm_config.quant_config
|
350 |
multimodal_config = vllm_config.model_config.multimodal_config
|
351 |
+
pooler_config = vllm_config.model_config.pooler_config
|
352 |
+
# lora_config = vllm_config.lora_config
|
353 |
+
|
354 |
self.config = config
|
355 |
self.multimodal_config = multimodal_config
|
356 |
+
# self.lora_config = lora_config
|
357 |
|
358 |
+
config.speech_config = \
|
359 |
+
_autoset_attn_implementation_for_whisper(config.speech_config)
|
360 |
+
self.speech_encoder = WhisperEncoder(config.speech_config)
|
361 |
self.ln_speech = nn.LayerNorm(config.speech_config.d_model)
|
362 |
self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(
|
363 |
config.speech_config.d_model, config.text_config.hidden_size)
|
364 |
|
365 |
self.quant_config = quant_config
|
366 |
|
367 |
+
self.model = Gemma2Model(
|
368 |
vllm_config=vllm_config.with_hf_config(config.text_config),
|
369 |
prefix=maybe_prefix(prefix, "model"))
|
370 |
self.unpadded_vocab_size = config.text_config.vocab_size
|
371 |
if config.text_config.tie_word_embeddings:
|
372 |
+
self.lm_head = self.model.embed_tokens
|
373 |
else:
|
374 |
self.lm_head = ParallelLMHead(config.text_config.vocab_size,
|
375 |
config.text_config.hidden_size,
|
|
|
381 |
|
382 |
self.sampler = get_sampler()
|
383 |
|
384 |
+
# The same model class supports both language generation and embedding
|
385 |
+
# because the architecture name is the same
|
386 |
+
self._pooler = Pooler.from_config_with_defaults(
|
387 |
+
pooler_config,
|
388 |
+
pooling_type=PoolingType.LAST,
|
389 |
+
normalize=True,
|
390 |
+
softmax=False)
|
391 |
+
|
392 |
self.make_empty_intermediate_tensors = (
|
393 |
+
self.model.make_empty_intermediate_tensors)
|
394 |
|
395 |
def _validate_and_reshape_mm_tensor(self,
|
396 |
mm_input: Union[torch.Tensor,
|
|
|
453 |
if audio_input is None:
|
454 |
inputs_embeds = None
|
455 |
else:
|
456 |
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
457 |
processed_audio_features = self._process_audio_input(audio_input)
|
458 |
# merge llm embeddings and audio features
|
459 |
mask = (input_ids == self.config.speech_token_index)
|
|
|
461 |
|
462 |
input_ids = None
|
463 |
|
464 |
+
hidden_states = self.model(
|
465 |
input_ids=input_ids,
|
466 |
positions=positions,
|
467 |
kv_caches=kv_caches,
|
|
|
484 |
) -> Optional[SamplerOutput]:
|
485 |
next_tokens = self.sampler(logits, sampling_metadata)
|
486 |
return next_tokens
|
487 |
+
|
488 |
+
def pooler(
|
489 |
+
self,
|
490 |
+
hidden_states: torch.Tensor,
|
491 |
+
pooling_metadata: PoolingMetadata,
|
492 |
+
) -> Optional[PoolerOutput]:
|
493 |
+
return self._pooler(hidden_states, pooling_metadata)
|
494 |
|
495 |
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
496 |
stacked_params_mapping = [
|
|
|
535 |
param = params_dict[name]
|
536 |
weight_loader = getattr(param, "weight_loader",
|
537 |
default_weight_loader)
|
538 |
+
weight_loader(param, loaded_weight)
|